Question

1. a. Consider the definition of relation. If A is the set of even numbers and...

1.

a. Consider the definition of relation. If A is the set of even numbers and ≡ is the subset of ordered pairs (a,b) where a<b in the usual sense, is ≡ a relation? Explain.

b. Consider the definition of partition on the bottom of page 18. Theorem 2 says that the equivalence classes of an equivalence relation form a partition of the set. Consider the set ℕ with the equivalence relation ≡ defined by the rule: a≡b in ℕ if a,b have the same remainder when divided by 5. For example, a=1 and b=6 works since both 1 and 6 have the same remainder when divided by 5. Write down the equivalences classes for this equivalence relation. Verify that they do partition the set ℕ (HINT: to form one of the classes, think about all the numbers that are equivalent to 1 and 6)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be a relation on set RxR of ordered pairs of real numbers such that...
Let R be a relation on set RxR of ordered pairs of real numbers such that (a,b)R(c,d) if a+d=b+c. Prove that R is an equivalence relation and find equivalence class [(0,b)]R
Consider the definition of equivalence class. Let A be the set {0,1,2,3,4}. Is it possible to...
Consider the definition of equivalence class. Let A be the set {0,1,2,3,4}. Is it possible to have an equivalence relation on A with the equivalence classes: {0,1,2} and {2,3,4}? Explain. (Hint: Think about the element 2)
Consider the following relation on the set Z: xRy ? x2 + y is even. For...
Consider the following relation on the set Z: xRy ? x2 + y is even. For each question below, if your answer is "yes", then prove it, if your answer is "no", then show a counterexample. (i) Is R reflexive? (ii) Is R symmetric? (iii) Is R antisymmetric? (iv) Is R transitive? (v) Is R an equivalence relation? If it is, then describe the equivalence classes of R. How many equivalence classes are there?
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z...
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z is the whole integers.) 1) Give two real numbers that are in the same equivalence class. 2) Give two real numbers that are not in the same equivalence class. 3) Prove that this relation is an equivalence relation.
Consider the following relation ∼ on the set of integers a ∼ b ⇐⇒ b 2...
Consider the following relation ∼ on the set of integers a ∼ b ⇐⇒ b 2 − a 2 is divisible by 3 Prove that this is an equivalence relation. List all equivalence classes.
Let R be the relation on the set of real numbers such that xRy if and...
Let R be the relation on the set of real numbers such that xRy if and only if x and y are real numbers that differ by less than 1, that is, |x − y| < 1. Which of the following pair or pairs can be used as a counterexample to show this relation is not an equivalence relation? A) (1, 1) B) (1, 1.8), (1.8, 3) C) (1, 1), (3, 3) D) (1, 1), (1, 1.5)
Let A = {1, 2, 3, 4, 5}. Describe an equivalence relation R on the set...
Let A = {1, 2, 3, 4, 5}. Describe an equivalence relation R on the set A that produces the following partition (has the sets of the partition as its equivalence classes): A1 = {1, 4}, A2 = {2, 5}, A3 = {3} You are free to describe R as a set, as a directed graph, or as a zero-one matrix.
1. Answer the following questions and justify your answer. a. Given any set S of 6...
1. Answer the following questions and justify your answer. a. Given any set S of 6 natural numbers, must there be two numbers in S that have the same remainder when divided by 8? b. Given any set S of 10 natural numbers, must there be two numbers in S that have the same remainder when divided by 8? 
 c. Let S be a finite set of natural numbers. How big does S have to be at least so that...
Recall that we have proven that we have the relation “ mod n” on the integers...
Recall that we have proven that we have the relation “ mod n” on the integers where a ≡ b mod n if n | b − a . We call the set of equivalence classes: Z/nZ. Show that addition and multiplication are well-defined on the equivalence classes by showing (a) that you have a definition of addition and multiplication for pairs which matches your intuition and (b) that if you choose different representatives when you add or multiply, the...
Consider the following set of ordered pairs. x 4 1 2 5 y 5 1 3...
Consider the following set of ordered pairs. x 4 1 2 5 y 5 1 3 6 ​ a) Calculate the slope and​ y-intercept for these data. ​ b) Calculate the total sum of squares​ (SST). ​c) Partition the sum of squares into the SSR and SSE.