Question

Graph Theory: If a connedted bipartite graph has a Hamilton path, then m and n can...

Graph Theory:
If a connedted bipartite graph has a Hamilton path, then m and n can differ at most one.
why is that? shouldn't there be an even amount of vertices?
please explain

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the diameters of Kn (Connected graph with n vertices), Km,n (Bipartite graph with m and...
Find the diameters of Kn (Connected graph with n vertices), Km,n (Bipartite graph with m and n vertices), and Cn (Cycle graph with n vertices). For each, clearly explain your reasoning.
GRAPH THEORY: Let G be a graph which can be decomposed into Hamilton cycles. Prove that...
GRAPH THEORY: Let G be a graph which can be decomposed into Hamilton cycles. Prove that G must be k-regular, and that k must be even. Prove that if G has an even number of vertices, then the edge chromatic number of G is Δ(G)=k.
please solve step by step. thank you A bipartite graph is a graph whose vertices can...
please solve step by step. thank you A bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets U and V such that every edge connects a vertex in U to one in V. Show that a simple graph is bipartite if and only if it is 2-colorable.
Prove that a bipartite simple graph with n vertices must have at most n2/4 edges. (Here’s...
Prove that a bipartite simple graph with n vertices must have at most n2/4 edges. (Here’s a hint. A bipartite graph would have to be contained in Kx,n−x, for some x.)
G is a complete bipartite graph on 7 vertices. G is planar, and it has an...
G is a complete bipartite graph on 7 vertices. G is planar, and it has an Eulerian path. Answer the questions, and explain your answers. 1. How many edges does G have? 2. How many faces does G have? 3. What is the chromatic number of G?
10.-Construct a connected bipartite graph that is not a tree with vertices Q,R,S,T,U,V,W. What is the...
10.-Construct a connected bipartite graph that is not a tree with vertices Q,R,S,T,U,V,W. What is the edge set? Construct a bipartite graph with vertices Q,R,S,T,U,V,W such that the degree of S is 4. What is the edge set? 12.-Construct a simple graph with vertices F,G,H,I,J that has an Euler trail, the degree of F is 1 and the degree of G is 3. What is the edge set? 13.-Construct a simple graph with vertices L,M,N,O,P,Q that has an Euler circuit...
For what values of m, n ∈ Z>0 does the complete bipartite graph Km,n have a...
For what values of m, n ∈ Z>0 does the complete bipartite graph Km,n have a perfect matching? Prove it
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The...
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle on the graph and give the vertex list of the Eulerian Cycle. Draw a Bipartite Graph with 10 vertices that has an Eulerian Path and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle...
Let n be a positive integer, and let Hn denote the graph whose vertex set is...
Let n be a positive integer, and let Hn denote the graph whose vertex set is the set of all n-tuples with coordinates in {0, 1}, such that vertices u and v are adjacent if and only if they differ in one position. For example, if n = 3, then (0, 0, 1) and (0, 1, 1) are adjacent, but (0, 0, 0) and (0, 1, 1) are not. Answer the following with brief justification (formal proofs not necessary): a....
Graph Theory . While it has been proved that any tree with n vertices must have...
Graph Theory . While it has been proved that any tree with n vertices must have n − 1 edges. Here, you will prove the converse of this statement. Prove that if G = (V, E) is a connected graph such that |E| = |V | − 1, then G is a tree.