Consider the following matrix A and its reduced row-echelon
form:
Find the dimensions of row(A), null(A),...
Consider the following matrix A and its reduced row-echelon
form:
Find the dimensions of row(A), null(A), and col(A), and give a
basis for each of them.
A= ( < 0, 0, 0,1 > , < 0, 0, 0, 3 >, < 3, 0, -3,
-2> , < 6, 0, -6, -9 > , < -3, -5, 13 , -2 >,
<-6, -10, 26, -8 > )
rref = ( < 1, 0 ,0, 0 >, < 3, 0, 0, 0...
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let
X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix...
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let
X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix whose columns are
⃗v1,⃗v2,⃗v3,⃗v4. Suppose further that every subset Y ⊂ V of size
two is linearly independent. Explain what form(s) rref(X), the
reduced row echelon form of X, must take in this case. Hint: you
won’t be able to pin down exact numbers for every entry of rref(X),
but you might know things like whether the entry can be zero or
not, etc.
2X1-X2+X3+7X4=0
-1X1-2X2-3X3-11X4=0
-1X1+4X2+3X3+7X4=0
a. Find the reduced row - echelon form of the coefficient
matrix
b....
2X1-X2+X3+7X4=0
-1X1-2X2-3X3-11X4=0
-1X1+4X2+3X3+7X4=0
a. Find the reduced row - echelon form of the coefficient
matrix
b. State the solutions for variables X1,X2,X3,X4 (including
parameters s and t)
c. Find two solution vectors u and v such that the solution
space is \
a set of all linear combinations of the form su + tv.