Question

1. For each of these problems, (i) verify by direct substitution that y1 and y2 are...

1. For each of these problems, (i) verify by direct substitution that y1 and y2 are both solutions of the ODE, and (ii) find the particular solution in the form y(x) = c1y1(x) + c2y2(x) that satisfies the given initial conditions. (a) y''+5y'-6y=0, y1(x) = e^−6x , y2(x) = e^x , y(0)=2, y'(0)=1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the second-order homogeneous linear equation y''−6y'+9y=0. (a) Use the substitution y=e^(rt) to attempt to find...
Consider the second-order homogeneous linear equation y''−6y'+9y=0. (a) Use the substitution y=e^(rt) to attempt to find two linearly independent solutions to the given equation. (b) Explain why your work in (a) only results in one linearly independent solution, y1(t). (c) Verify by direct substitution that y2=te^(3t) is a solution to y''−6y'+9y=0. Explain why this function is linearly independent from y1 found in (a). (d) State the general solution to the given equation
y1 = 2 cos(x) − 1 is a particular solution for y'' + 4y = 6...
y1 = 2 cos(x) − 1 is a particular solution for y'' + 4y = 6 cos(x) − 4. y2 = sin(x) is a particular solution for y''+4y = 3 sin(x). Using the two particular solutions, find a particular solution for y''+4y = 2 cos(x)+sin(x)− 4/3 . Verify if the particular solution satisfies the given DE. [Hint: Rewrite the right hand of this equation in terms of the given particular solutions to get the particular solution] Verify if the particular...
The function y1(t) = t is a solution to the equation. t2 y'' + 2ty' -...
The function y1(t) = t is a solution to the equation. t2 y'' + 2ty' - 2y = 0, t > 0 Find another particular solution y2 so that y1 and y2 form a fundamental set of solutions. This means that, after finding a solution y2, you also need to verify that {y1, y2} is really a fundamental set of solutions.
Choose the correct answers If y1 and y2 are two solutions of a nonhomogeneous equation ayjj+...
Choose the correct answers If y1 and y2 are two solutions of a nonhomogeneous equation ayjj+ byj+ cy =f (x), then their difference is a solution of the equation ayjj+ byj+ cy = 0. If f (x) is continuous everywhere, then there exists a unique solution to the following initial value problem.                                   f (x)yj= y,   y(0) = 0 The differential equation yjj + t2yj − y = 3 is linear. There is a solution to the ODE yjj+3yj+y...
In this problem verify that the given functions y1 and y2 satisfy the corresponding homogeneous equation....
In this problem verify that the given functions y1 and y2 satisfy the corresponding homogeneous equation. Then find a particular solution of the nonhomogeneous equation. x^2y′′−3xy′+4y=31x^2lnx, x>0, y1(x)=x^2, y2(x)=x^2lnx. Enter an exact answer.
Find the function y1(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y1(0)=1,y′1(0)=0. y1(t)=? Find...
Find the function y1(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y1(0)=1,y′1(0)=0. y1(t)=? Find the function y2(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y2(0)=0, y′2(0)=1. y2(t)= ? Find the Wronskian of these two solutions you have found: W(t)=W(y1,y2). W(t)=?
Given y1(t)=t^2 and y2(t)=t^-1 satisfy the corresponding homogeneous equation of t^2y''−2y=2−t3,  t>0 Then the general solution to...
Given y1(t)=t^2 and y2(t)=t^-1 satisfy the corresponding homogeneous equation of t^2y''−2y=2−t3,  t>0 Then the general solution to the non-homogeneous equation can be written as y(t)=c1y1(t)+c2y2(t)+yp(t) yp(t) =
Two solutions to the differential equation y00 + 2y0 + y = 0 are y1(t) =...
Two solutions to the differential equation y00 + 2y0 + y = 0 are y1(t) = e−t and y2(t) = te−t. Verify that y1(t) is a solution and show that y1,y2 form a fundamental set of solutions by computing the Wronskian
Given that y1 = t, y2 = t 2 are solutions to the homogeneous version of...
Given that y1 = t, y2 = t 2 are solutions to the homogeneous version of the nonhomogeneous DE below, verify that they form a fundamental set of solutions. Then, use variation of parameters to find the general solution y(t). (t^2)y'' - 2ty' + 2y = 4t^2 t > 0
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx     (5) as instructed, to find a second solution y2(x). y'' + 36y = 0;    y1 = cos(6x) y2 = 2) The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1...