Question

Prove the following Let f : A → B then, for all D, E ⊆ A...

Prove the following

Let f : A → B then, for all D, E ⊆ A and for all G, H ⊆ B we have

f-1(G ∪ H) = f-1(G) ∪ f-1(H)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let A = {1,2,3,4} and let F be the set of all functions f from...
1. Let A = {1,2,3,4} and let F be the set of all functions f from A to A. Prove or disprove each of the following statements. (a)For all functions f, g, h∈F, if f◦g=f◦h then g=h. (b)For all functions f, g, h∈F, iff◦g=f◦h and f is one-to-one then g=h. (c) For all functions f, g, h ∈ F , if g ◦ f = h ◦ f then g = h. (d) For all functions f, g, h ∈...
Let Let A = {a, e, g} and B = {c, d, e, f, g}. Let...
Let Let A = {a, e, g} and B = {c, d, e, f, g}. Let f : A → B and g : B → A be defined as follows: f = {(a, c), (e, e), (g, d)} g = {(c, a), (d, e), (e, e), (f, a), (g, g)} (a) Consider the composed function g ◦ f. (i) What is the domain of g ◦ f? What is its codomain? (ii) Find the function g ◦ f. (Find...
let A = { a, b, c, d , e, f, g} B = { d,...
let A = { a, b, c, d , e, f, g} B = { d, e , f , g} and C ={ a, b, c, d} find : (B n C)’ B’ B n C (B U C) ‘
9. Let S = {a,b,c,d,e,f,g,h,i,j}. a. is {{a}, {b, c}, {e, g}, {h, i, j}} a...
9. Let S = {a,b,c,d,e,f,g,h,i,j}. a. is {{a}, {b, c}, {e, g}, {h, i, j}} a partition of S? Explain. b. is {{a, b}, {c, d}, {e, f}, {g, h}, {h, i, j}} a partition of S? Explain. c. is {{a, b}, {c, d}, {e, f}, {g, h}, {i, j}} a partition of S? Explain.
Prove or disprove the following: (a) Let f : A → B and g : B...
Prove or disprove the following: (a) Let f : A → B and g : B → C be two functions. If g is onto, then g ◦ f : A → C is onto. (b) Let f : A → B and g : B → C be two functions. If g is one-to-one, then g ◦ f : A → C is one-to-one. (c) There exist functions f : A → B and g : B → C...
Let S = {A, B, C, D, E, F, G, H, I, J} be the set...
Let S = {A, B, C, D, E, F, G, H, I, J} be the set consisting of the following elements: A = N, B = 2N , C = 2P(N) , D = [0, 1), E = ∅, F = Z × Z, G = {x ∈ N|x 2 + x < 2}, H = { 2 n 3 k |n, k ∈ N}, I = R \ Q, J = R. Consider the relation ∼ on S given...
Let f(x) and g(x) be polynomials and suppose that we have f(a) = g(a) for all...
Let f(x) and g(x) be polynomials and suppose that we have f(a) = g(a) for all real numbers a. In this case prove that f(x) and g(x) have exactly the same coefficients. [Hint: Consider the polynomial h(x) = f(x) − g(x). If h(x) has at least one nonzero coefficient then the equation h(x) = 0 has finitely many solutions.]
Let E and F be two disjoint closed subsets in metric space (X,d). Prove that there...
Let E and F be two disjoint closed subsets in metric space (X,d). Prove that there exist two disjoint open subsets U and V in (X,d) such that U⊃E and V⊃F
a) Let f : [a, b] −→ R and g : [a, b] −→ R be...
a) Let f : [a, b] −→ R and g : [a, b] −→ R be differentiable. Then f and g differ by a constant if and only if f ' (x) = g ' (x) for all x ∈ [a, b]. b) For c > 0, prove that the following equation does not have two solutions. x3− 3x + c = 0, 0 < x < 1 c) Let f : [a, b] → R be a differentiable function...
Let f : A → B, and let V ⊆ B. (a) Prove that V ⊇...
Let f : A → B, and let V ⊆ B. (a) Prove that V ⊇ f(f−1(V )). (b) Give an explicit example where the two sides are not equal. (c) Prove that if f is onto then the two sides must be equal.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT