Question

5. Prove or disprove the following statements. (a) Let L : V → W be a...

5. Prove or disprove the following statements.

(a) Let L : V → W be a linear mapping. If {L(~v1), . . . , L( ~vn)} is a basis for W, then {~v1, . . . , ~vn} is a basis for V.

(b) If V and W are both n-dimensional vector spaces and L : V → W is a linear mapping, then nullity(L) = 0.

(c) If V is an n-dimensional vector space and L : V → V is a linear operator such that ker(L) 6= {~0}, then {L(~v1), . . . , L( ~vn)} is linearly dependent.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let V and W be finite-dimensional vector spaces over F, and let φ : V →...
Let V and W be finite-dimensional vector spaces over F, and let φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V ) = n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn}, for some vectors vk+1, . . . , vn ∈ V . Prove that...
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
let T:V to W be a linear transdormation of vector space V and W and let...
let T:V to W be a linear transdormation of vector space V and W and let B=(v1,v2,...,vn) be a basis for V. Show that if (Tv1,Tv2,...,Tvn) is linearly independent, thenT is injecfive.
Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T...
Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T : V → W be linear map. The kernel of T, denoted ker(T), is defined to be the set ker(T) = {v ∈ V : T(v) = 0}. Then ker(T) is a linear subspace of V . Let W be a closed subspace of V with W not equal to V . Prove that W is nowhere dense in V .
Let V be a vector space and let v1,v2,...,vn be elements of V . Let W...
Let V be a vector space and let v1,v2,...,vn be elements of V . Let W = span(v1,...,vn). Assume v ∈ V and ˆ v ∈ V but v / ∈ W and ˆ v / ∈ W. Define W1 = span(v1,...,vn,v) and W2 = span(v1,...,vn, ˆ v). Prove that either W1 = W2 or W1 ∩W2 = W.
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n...
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n and dim(W) = m, and let φ : V → W be a linear transformation. Fill in the six blanks to give bounds on the sizes of the dimension of ker(φ) and the dimension of im(φ). 3. Let V and W be finite-dimensional vector spaces over field F with dim(V ) = n and dim(W) = m, and let φ : V → W...
) Let L : V → W be a linear transformation between two finite dimensional vector...
) Let L : V → W be a linear transformation between two finite dimensional vector spaces. Assume that dim(V) = dim(W). Prove that the following statements are equivalent. a) L is one-to-one. b) L is onto. please help asap. my final is tomorrow morning. Thanks!!!!
Let v = (v1, · · · , vn), w = (w1, · · · ,...
Let v = (v1, · · · , vn), w = (w1, · · · , wn) ? R^n and let <v, w> denote the inner product on R n given by <v, w>= v1w1 + · · · + vnwn. Prove that for any linear transformation T : R^n ? R, there exists a fixed vector v ? R^n such that T(w) = <v, w>
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for...
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for any vector z in V whatsoever, the vectors u, v, w and z are linearly dependent.
Let L : V → W be a linear transformation between two vector spaces. Show that...
Let L : V → W be a linear transformation between two vector spaces. Show that dim(ker(L)) + dim(Im(L)) = dim(V)