Question

A simple undirected graph consists of n vertices in a single component. What is the maximum...

A simple undirected graph consists of n vertices in a single component.

What is the maximum possible number of edges it could have?

What is the minimum possible number of edges it could have?

Prove that your answers are correct

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be an undirected graph with n vertices and m edges. Use a contradiction argument...
Let G be an undirected graph with n vertices and m edges. Use a contradiction argument to prove that if m<n−1, then G is not connected
Discrete Math: What is the maximum number of edges on a simple disconnected graph with n...
Discrete Math: What is the maximum number of edges on a simple disconnected graph with n vertices. Justify your answer. Please write clearly and do not skip steps. Thank you
Suppose G is a simple, nonconnected graph with n vertices that is maximal with respect to...
Suppose G is a simple, nonconnected graph with n vertices that is maximal with respect to these properties. That is, if you tried to make a larger graph in which G is a subgraph, this larger graph will lose at least one of the properties (a) simple, (b) nonconnected, or (c) has n vertices. What does being maximal with respect to these properties imply about G?G? That is, what further properties must GG possess because of this assumption? In this...
Prove that a bipartite simple graph with n vertices must have at most n2/4 edges. (Here’s...
Prove that a bipartite simple graph with n vertices must have at most n2/4 edges. (Here’s a hint. A bipartite graph would have to be contained in Kx,n−x, for some x.)
Make a general conjecture about the minimum number of edges in a graph with n vertices...
Make a general conjecture about the minimum number of edges in a graph with n vertices and r components, where n, r >= 1. Then prove this conjecture.
Prove that a simple graph with p vertices and q edges is complete (has all possible...
Prove that a simple graph with p vertices and q edges is complete (has all possible edges) if and only if q=p(p-1)/2. please prove it step by step. thanks
Let G be a simple graph in which all vertices have degree four. Prove that it...
Let G be a simple graph in which all vertices have degree four. Prove that it is possible to color the edges of G orange or blue so that each vertex is adjacent to two orange edges and two blue edges. Hint: The graph G has a closed Eulerian walk. Walk along it and color the edges alternately orange and blue.
Let G be a connected simple graph with n vertices and m edges. Prove that G...
Let G be a connected simple graph with n vertices and m edges. Prove that G contains at least m−n+ 1 different subgraphs which are polygons (=circuits). Note: Different polygons can have edges in common. For instance, a square with a diagonal edge has three different polygons (the square and two different triangles) even though every pair of polygons have at least one edge in common.
I.15: If G is a simple graph with at least two vertices, prove that G has...
I.15: If G is a simple graph with at least two vertices, prove that G has two vertices of the same degree.    Hint: Let G have n vertices. What are possible different degree values? Different values if G is connected?
please solve it step by step. thanks Prove that every connected graph with n vertices has...
please solve it step by step. thanks Prove that every connected graph with n vertices has at least n-1 edges. (HINT: use induction on the number of vertices n)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT