Question

Hurry pls. Let W denote the set of English words. for u,v are elements of W...

Hurry pls. Let W denote the set of English words. for u,v are elements of W (u~v have the same first letter and same last letter same length)

a) prove ~ is an equivalence relation

b)list all elements of the equivalence class[a]

c)list all elements of [ox]

d) list all elements of[are]

e) list all elements of [five]

find all three letter words x such that [x]has 5 elements

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S be a finite set and let P(S) denote the set of all subsets of...
Let S be a finite set and let P(S) denote the set of all subsets of S. Define a relation on P(S) by declaring that two subsets A and B are related if A and B have the same number of elements. (a) Prove that this is an equivalence relation. b) Determine the equivalence classes. c) Determine the number of elements in each equivalence class.
Let T:V→W be a linear transformation and U be a subspace of V. Let T(U)T(U) denote...
Let T:V→W be a linear transformation and U be a subspace of V. Let T(U)T(U) denote the image of U under T (i.e., T(U)={T(u⃗ ):u⃗ ∈U}). Prove that T(U) is a subspace of W
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set...
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set S′={3u−w,v+w,−2w}S′={3u−w,v+w,−2w} is also a linearly independent set in V.
Let U and V be subspaces of the vector space W . Recall that U ∩...
Let U and V be subspaces of the vector space W . Recall that U ∩ V is the set of all vectors ⃗v in W that are in both of U or V , and that U ∪ V is the set of all vectors ⃗v in W that are in at least one of U or V i: Prove: U ∩V is a subspace of W. ii: Consider the statement: “U ∪ V is a subspace of W...
let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) ,...
let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) , for all u,v load to V. hint : you may use the Cauchy-Schwars inquality: |{u,v}|,= ||u||*||v||.
Let U and W be subspaces of a nite dimensional vector space V such that U...
Let U and W be subspaces of a nite dimensional vector space V such that U ∩ W = {~0}. Dene their sum U + W := {u + w | u ∈ U, w ∈ W}. (1) Prove that U + W is a subspace of V . (2) Let U = {u1, . . . , ur} and W = {w1, . . . , ws} be bases of U and W respectively. Prove that U ∪ W...
Let G be a graph with vertex set V. Define a relation R from V to...
Let G be a graph with vertex set V. Define a relation R from V to itself as follows: vertex u has this relation R with vertex v, u R v, if there is a path in G from u to v. Prove that this relation is an equivalence relation. Write your proof with complete sentences line by line in a logical order.  If you can, you may write your answer to this question directly in the space provided.Your presentation counts.
A triangle in a graph G=(V,E)is a 3-cycle; i.e. a set of three vertices {u,v,w}such that...
A triangle in a graph G=(V,E)is a 3-cycle; i.e. a set of three vertices {u,v,w}such that (u,v),(v,w),(u,w)∈E . Present an O(n3) Algortihm that will list all triangles.
Let (X, d) be a metric space, and let U denote the set of all uniformly...
Let (X, d) be a metric space, and let U denote the set of all uniformly continuous functions from X into R. (a) If f,g ∈ U and we define (f + g) : X → R by (f + g)(x) = f(x) + g(x) for all x in X, show that f+g∈U. In words,U is a vector space over R. (b)If f,g∈U and we define (fg) : X → R by (fg)(x) = f(x)g(x) for all x in X,...
1. Let Z[i] denote the set of all ‘complex numbers with integer coefficients’:the set of all...
1. Let Z[i] denote the set of all ‘complex numbers with integer coefficients’:the set of all a + bi such that a and b are integers. We say that z is composite if there exist two complex integers v and w such that z=vw and |v|>1 and |w|>1. Then z is prime if it is not composite A) Prove that every complex integer z, |z| > 1, can be expressed as a product of prime complex integers.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT