Question

Give an example of a set A and a binary relation R on A that is...

Give an example of a set A and a binary relation R on A that is neither symmetric nor antisymmetric.

Homework Answers

Answer #1

Let R be a binary relation defined on a set S.

Then, in the most basic terms, a symmetric relation is one in which for any ordered pair (x,y) in R, the ordered pair (y,x) must also be in R.

While an anti symmetric relation is one in which for any ordered pair (x,y) in R, the ordered pair (y,x) does NOT belong to R, unless x=y.

Example:

Now, consider a set A = {a,b,c}.

And R = {(a,b), (b,c), (c,b)}

Now,

  • R is not symmetric as (a,b) belongs to R but (b,a) does not belong to R. And that violates the definition of a symmetric relation.
  • R is not antisymmetric as for (b,c) belongs to R, we also have (c,b) in R. And so, also again the definition of an antisymmetric relation is being violated.
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Construct a binary relation R on a nonempty set A satisfying the given condition, justify your...
Construct a binary relation R on a nonempty set A satisfying the given condition, justify your solution. (a) R is an equivalence relation. (b) R is transitive, but not symmetric. (c) R is neither symmetric nor reflexive nor transitive. (d) (5 points) R is antisymmetric and symmetric.
Determine whether the binary relation R on {a, b, c}   where R={(a, a), (b, b)), (c,...
Determine whether the binary relation R on {a, b, c}   where R={(a, a), (b, b)), (c, c), (a, b), (a, c), (c, b) } is: a. reflexive, antisymmetric, symmetric b. transitive, symmetric, antisymmetric c. antisymmetric, reflexive, transitive d. symmetric, reflexive, transitive
Let Z be the set of integers. Define ~ to be a relation on Z by...
Let Z be the set of integers. Define ~ to be a relation on Z by x~y if and only if |xy|=1. Show that ~ is symmetric and transitive, but is neither reflexvie nor antisymmetric.
Let A be the set of all integers, and let R be the relation "m divides...
Let A be the set of all integers, and let R be the relation "m divides n." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Let A be the set of all real numbers, and let R be the relation "less...
Let A be the set of all real numbers, and let R be the relation "less than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
the relation R on the set of all people where aRb means that a is younger...
the relation R on the set of all people where aRb means that a is younger than b. Determine if R is: reflexive symmetric transitive antisymmetric
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation...
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation R on Z where (?, ?) ∈ ? if ? = ? . The relation R on the set of all subsets of {1, 2, 3, 4} where SRT means S C T.
Let A = {a,b,c,d}. Find an example of a relation on A that is (i) reflexive...
Let A = {a,b,c,d}. Find an example of a relation on A that is (i) reflexive and symmetric. (ii) not symmetric and not antisymmetric. (iii) not symmetric but antisymmetric. (iv) an equivalence relation (v) a total order.
Let A = {1,2,3,4,5} and X = P(A) be its powerset. Define a binary relation on...
Let A = {1,2,3,4,5} and X = P(A) be its powerset. Define a binary relation on X by for any sets S, T ∈ X, S∼T if and only if S ⊆ T. (a) Is this relation reflexive? (b) Is this relation symmetric or antisymmetric? (c) Is this relation transitive?
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.