Question

For each of the following linear operators T on vector space V, compute the determinant T...

For each of the following linear operators T on vector space V, compute the determinant T and the characteristic polynomial of T.

(a). V = R2 , T(a, b) = (2a - b, 5a + 3b)

(b). V = R3 , T(a, b, c) = (a - 3b + 2c, -2a + b + c, 4a - c)

(c). V = P3(R) , T(a, b, c) = T(a + bx + cx2 + dx3) = (a - c) + (-a + b + d)x + (a + b - d)x2 - cx3

(d). V = M2x2 (R) , T(A) = 2AT - A

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the linear operator T on V , find an ordered basis for the T -cyclic...
For the linear operator T on V , find an ordered basis for the T -cyclic subspace generated by the vector v. (a) V =R3,T(a,b,c)=(2a+b,b−3a+c,4c)wherev=(1,0,0). (b) V = P3(R), T(f(x)) = 3f′′(x), and v = x2.
Suppose V is a vector space over F, dim V = n, let T be a...
Suppose V is a vector space over F, dim V = n, let T be a linear transformation on V. 1. If T has an irreducible characterisctic polynomial over F, prove that {0} and V are the only T-invariant subspaces of V. 2. If the characteristic polynomial of T = g(t) h(t) for some polynomials g(t) and h(t) of degree < n , prove that V has a T-invariant subspace W such that 0 < dim W < n
1. V is a subspace of inner-product space R3, generated by vector u =[2 2 1]T...
1. V is a subspace of inner-product space R3, generated by vector u =[2 2 1]T and v =[ 3 2 2]T. (a) Find its orthogonal complement space V┴ ; (b) Find the dimension of space W = V+ V┴; (c) Find the angle θ between u and v and also the angle β between u and normalized x with respect to its 2-norm. (d) Considering v’ = av, a is a scaler, show the angle θ’ between u and...
Suppose V is a vector space and T is a linear operator. Prove by induction that...
Suppose V is a vector space and T is a linear operator. Prove by induction that for all natural numbers n, if c is an eigenvalue of T then c^n is an eigenvalue of T^n.
Consider the vector space P2 := P2(F) and its standard basis α = {1,x,x^2}. 1Prove that...
Consider the vector space P2 := P2(F) and its standard basis α = {1,x,x^2}. 1Prove that β = {x−1,x^2 −x,x^2 + x} is also a basis of P2 2Given the map T : P2 → P2 defined by T(a + bx + cx2) = (a + b + c) + (a + 2b + c)x + (b + c)x2 compute [T]βα. 3 Is T invertible? Why 4 Suppose the linear map U : P2 → P2 has the matrix representation...
Let V be a finite-dimensional vector space over C and T in L(V) be an invertible...
Let V be a finite-dimensional vector space over C and T in L(V) be an invertible operator in V. Suppose also that T=SR is the polar decomposition of T where S is the correspondIng isometry and R=(T*T)^1/2 is the unique positive square root of T*T. Prove that R is an invertible operator that committees with T, that is TR-RT.
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2,...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2, and ?S is the subset of ?2P2 consisting of all polynomials of the form ?(?)=?2+?.p(x)=x2+c. B. ?=?5(?)V=C5(I), and ?S is the subset of ?V consisting of those functions satisfying the differential equation ?(5)=0.y(5)=0. C. ?V is the vector space of all real-valued functions defined on the interval [?,?][a,b], and ?S is the subset of ?V consisting of those functions satisfying ?(?)=?(?).f(a)=f(b). D. ?=?3(?)V=C3(I), and...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T (x) = Ax that reflects a vector (x1, x2) about the x2-axis. (b) Find a linear transformation S : R2 → R2 such that T(x) = Bx that rotates a vector (x1, x2) counterclockwise by 135 degrees. (c) Find a linear transformation (with domain and codomain) that has the effect of first reflecting as in (a) and then rotating as in (b). Give the...
Let WW be a subset of a vector space VV. By justifying your answer, determine whether...
Let WW be a subset of a vector space VV. By justifying your answer, determine whether WW is a subspace of VV. (a) [5 marks] W={(x1,x2,x3,x4):x1x4=0}W={(x1,x2,x3,x4):x1x4=0} and V=R4V=R4. (b) [5 marks] W={A:|A|≥1}W={A:|A|≥1} and V=M3,3V=M3,3, where |A||A| is the determinant of AA. (c) [10 marks] W={p(x)=a0+a1x+a2x2+a3x3:a0=a1anda2=a3}W={p(x)=a0+a1x+a2x2+a3x3:a0=a1anda2=a3} and V=P3V=P3.
1) Let T : V —> W be a linear transformation with dim(V) = m and...
1) Let T : V —> W be a linear transformation with dim(V) = m and dim(W) = n. For which of the following conditions is T one-to-one? (A) m>n (B) range(T)=Wandm=n (C) nullity(T) = m (D) rank(T)=m-1andn>m 2) For which of the linear transformations is nullity (T) = 0 ? Why? (A)T:R3 —>R8 (B)T:P3 —>P3 (C)T:M23 —>M33 (D)T:R5 —>R2 withrank(T)=2 withrank(T)=3 withrank(T)=6 withrank(T)=1
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT