Question

(A) Show that if a2=e for all elements a in a group G, then G must...

(A) Show that if a2=e for all elements a in a group G, then G must be abelian.

(B) Show that if G is a finite group of even order, then there is an a∈G such that a is not the identity and a2=e.

(C) Find all the subgroups of Z3×Z3. Use this information to show that Z3×Z3 is not the same group as Z9.

(Abstract Algebra)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Group Theory Question: Show that if a finite group G with 6 elements is not abelian,...
Group Theory Question: Show that if a finite group G with 6 elements is not abelian, then it must be the group of symmetries of an equilateral triangle. Can one have a similar statement for a finite group G of eight elements?
Suppose that g^2 = e for all elements g of a group G. Prove that G...
Suppose that g^2 = e for all elements g of a group G. Prove that G is abelian.
2. Let a and b be elements of a group, G, whose identity element is denoted...
2. Let a and b be elements of a group, G, whose identity element is denoted by e. Prove that ab and ba have the same order. Show all steps of proof.
: (a) Let p be a prime, and let G be a finite Abelian group. Show...
: (a) Let p be a prime, and let G be a finite Abelian group. Show that Gp = {x ∈ G | |x| is a power of p} is a subgroup of G. (For the identity, remember that 1 = p 0 is a power of p.) (b) Let p1, . . . , pn be pair-wise distinct primes, and let G be an Abelian group. Show that Gp1 , . . . , Gpn form direct sum in...
Let G be a finite group, and suppose that H is normal subgroup of G. Show...
Let G be a finite group, and suppose that H is normal subgroup of G. Show that, for every g ∈ G, the order of gH in G/H must divide the order of g in G. What is the order of the coset [4]42 + 〈[6]42〉 in Z42/〈[6]42〉? Find an example to show that the order of gH in G/H does not always determine the order of g in G. That is, find an example of a group G, and...
(abstract alg) Let G be a cyclic group with more than two elements: a) Prove that...
(abstract alg) Let G be a cyclic group with more than two elements: a) Prove that G has at least two different generators. b) If G is finite, prove that G has an even number of generators
let G be a finite group of even order. Show that the equation x^2=e has even...
let G be a finite group of even order. Show that the equation x^2=e has even number of solutions in G
A subgroup H of a group G is called a normal subgroup if gH=Hg for all...
A subgroup H of a group G is called a normal subgroup if gH=Hg for all g ∈ G. Every Group contains at least two normal subgroups: the subgroup consisting of the identity element only {e}; and the entire group G. If G=S(n) show that A(n) (the subgroup of even permuations) is also a normal subgroup of G.
1. Let a and b be elements of a group, G, whose identity element is denoted...
1. Let a and b be elements of a group, G, whose identity element is denoted by e. Assume that a has order 7 and that a^(3)*b = b*a^(3). Prove that a*b = b*a. Show all steps of proof.
13. Let a, b be elements of some group G with |a|=m and |b|=n.Show that if...
13. Let a, b be elements of some group G with |a|=m and |b|=n.Show that if gcd(m,n)=1 then <a> union <b>={e}. 18. Let G be a group that has at least two elements and has no non-trivial subgroups. Show that G is cyclic of prime order. 20. Let A be some permutation in Sn. Show that A^2 is in An. Please give me steps in details, thanks a lot!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT