Question

Verify the Caucy-riemann equations for the functions u(x,y), v(x,y) defined in the given domain u(x,y)=x³-3xy², v(x,y)=3x²y-y³,...

Verify the Caucy-riemann equations for the functions u(x,y), v(x,y) defined in the given domain

  1. u(x,y)=x³-3xy², v(x,y)=3x²y-y³, (x,y)ɛR
  2. u(x,y)=sinxcosy,v(x,y)=cosxsiny (x,y)ɛR
  3. u(x,y)=x/(x²+y²), v(x,y)=-y/(x²+y²),(x²+y²),   ( x²+y²)≠0
  4. u(x,y)=1/2 log(x²+y²), v(x,y)=sin¯¹(y/√¯x²+y²), ( x˃0 )                         

In each case,state a complex functions whose real and imaginary parts are u(x,y) and v(x,y)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two functions, u(x,y) and v(x,y), are said to verify the Cauchy-Riemann differentiation equations if they satisfy...
Two functions, u(x,y) and v(x,y), are said to verify the Cauchy-Riemann differentiation equations if they satisfy the following equations ∂u\dx=∂v/dy and ∂u/dy=−(∂v/dx) a. Verify that the Cauchy-Riemann differentiation equations can be written in the polar coordinate form as ∂u/dr=1/dr ∂v/dθ and ∂v/dr =−1/r ∂u/∂θ b. Show that the following functions satisfy the Cauchy-Riemann differen- tiation equations u=ln sqrt(x^(2)+y^(2)) and v= arctan y/x.
Can you find a functionv (x,y) so that u+iv is entire with u(x,y) =x^3+ 3xy^2 ?...
Can you find a functionv (x,y) so that u+iv is entire with u(x,y) =x^3+ 3xy^2 ? (cauchy- riemann equations---hint)
Solve the following nonhomogenous Cauchy-Euler equations for x > 0. a. x^(2)y′′+3xy′−3y=3x^(2).
Solve the following nonhomogenous Cauchy-Euler equations for x > 0. a. x^(2)y′′+3xy′−3y=3x^(2).
Suppose f is entire, with real and imaginary parts u and v satisfying u(x, y) v(x,...
Suppose f is entire, with real and imaginary parts u and v satisfying u(x, y) v(x, y) = 3 for all z = x + iy. Show that f is constant.
Suppose f is entire, with real and imaginary parts u and v satisfying u(x, y) v(x,...
Suppose f is entire, with real and imaginary parts u and v satisfying u(x, y) v(x, y) = 3 for all z = x + iy. Show that f is constant. Be clearly, please. Do not upload same answers from others on Chegg. THANKS
If z=(x+4y)ex+y,x=ln(u),y=v,z=(x+4y)ex+y,x=ln(u),y=v, find ∂z∂u∂z∂u and ∂z∂v∂z∂v. The variables are restricted to domains on which the functions...
If z=(x+4y)ex+y,x=ln(u),y=v,z=(x+4y)ex+y,x=ln(u),y=v, find ∂z∂u∂z∂u and ∂z∂v∂z∂v. The variables are restricted to domains on which the functions are defined.
Differential Geometry: Let a be a positive constant, and define x(u,v) := (v cos u, v...
Differential Geometry: Let a be a positive constant, and define x(u,v) := (v cos u, v sin u, a u), where 0 < u < 2π and v real. Compute the principal curvatures and the Gaussian curvature at each point of the surface defined by x.
The real part of a f (z) complex function is given as (x,y)=y^3-3x^2y. Show the harmonic...
The real part of a f (z) complex function is given as (x,y)=y^3-3x^2y. Show the harmonic function u(x,y) and find the expressions v(x,y) and f(z). Calculate f'(1+2i) and write x+iy algebraically.
Suppose u(t,x) and v(t,x ) is C^2 functions defined on R^2 that satisfy the first-order system...
Suppose u(t,x) and v(t,x ) is C^2 functions defined on R^2 that satisfy the first-order system of PDE Ut=Vx, Vt=Ux, A.) Show that both U and V are classical solutions to the wave equations  Utt= Uxx. Which result from multivariable calculus do you need to justify the conclusion. B)Given a classical sol. u(t,x) to the wave equation, can you construct a function v(t,x) such that u(t,x), v(t,x) form of sol. to the first order system.
8) Suppose a consumer’s utility function is defined by u(x,y)=3x+y for every x≥0 and y≥0 and...
8) Suppose a consumer’s utility function is defined by u(x,y)=3x+y for every x≥0 and y≥0 and the consumer’s initial endowment of wealth is w=100. Graphically depict the income and substitution effects for this consumer if initially Px=1 =Py and then the price of commodity x decreases to Px=1/2.