Question

Prove that for any xj ≥ 0 for all 1 ≤ j ≤ n we have...

Prove that for any

xj ≥ 0 for all 1 ≤ j ≤ n

we have

(x1x2 . . . xn)1/n ≤ (x1 + x2 + · · · + xn)/n.

In other words, the geometric mean of n non-negative numbers is smaller or equal to their arithmetic mean

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that...
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that lim n→∞ (x1 + x2 + · · · + xn)/ n = 0 .
Let {Xj} ∞ j=1 be a collection of i.i.d. random variables uniformly distributed on [0, 1]....
Let {Xj} ∞ j=1 be a collection of i.i.d. random variables uniformly distributed on [0, 1]. Let N be a Poisson random variable with mean n, and consider the random points {X1 , . . . , XN }. b. Let 0 < a < b < 1. Let C(a,b) be the number of the points {X1 , . . . , XN } that lies in (a, b). Find the conditional mass function of C(a,b) given that N =...
Let n ≥ 2 and x1, x2, ..., xn > 0 be such that x1 +...
Let n ≥ 2 and x1, x2, ..., xn > 0 be such that x1 + x2 + · · · + xn = 1. Prove that √ x1 + √ x2 + · · · + √ xn /√ n − 1 ≤ x1/ √ 1 − x1 + x2/ √ 1 − x2 + · · · + xn/ √ 1 − xn
you are given a list of n bits {x1,x2,...,xn} with each xi being an element in...
you are given a list of n bits {x1,x2,...,xn} with each xi being an element in {0,1}. you have to output either: a) a natural number k such that xk =1 or b) 0 if all bits are equal to zero. the only operation you are allowed to access the inputs is a function I(i,j) defined as: I(i,j) = { 1 (if some bit in xi, xi+1,...,xj has vaue 1), or 0, (if all bits xi,xi+1,...,xj have value 0}. the...
Use induction to prove that for any given θ, we have |sin(nθ)| <= n|sinθ| for any...
Use induction to prove that for any given θ, we have |sin(nθ)| <= n|sinθ| for any non-negative integer n.
) Let α be a fixed positive real number, α > 0. For a sequence {xn},...
) Let α be a fixed positive real number, α > 0. For a sequence {xn}, let x1 > √ α, and define x2, x3, x4, · · · by the following recurrence relation xn+1 = 1 2 xn + α xn (a) Prove that {xn} decreases monotonically (in other words, xn+1 − xn ≤ 0 for all n). (b) Prove that {xn} is bounded from below. (Hint: use proof by induction to show xn > √ α for all...
(a) Let a,b,c be elements of a field F. Prove that if a not= 0, then...
(a) Let a,b,c be elements of a field F. Prove that if a not= 0, then the equation ax+b=c has a unique solution. (b) If R is a commutative ring and x1,x2,...,xn are independent variables over R, prove that R[x σ(1),x σ (2),...,x σ (n)] is isomorphic to R[x1,x2,...,xn] for any permutation σ of the set {1,2,...,n}
if X1, X2 have the joint pdf f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1 and...
if X1, X2 have the joint pdf f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1 and 0,                  otherwise 1- Find the probability P(0<X1<1/3 , 0<X2<1/3) 2- For the same joint pdf, calculate E(X1X2) and E(X1 + X2) 3- Calculate Var(X1X2)
(i) Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2)...
(i) Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2) = 4x1(1-x2) ,     0<x1<1  0<x2<1                                       0,                  otherwise (ii) For the same joint pdf, calculate E(X1X2) and E(X1+ X2) (iii) Calculate Var(X1X2)
For X1, ..., Xn iid Unif(0, 1): a) ShowX(j) ∼Beta(j,n+1−j) b)Find the joint pdf between X(1)...
For X1, ..., Xn iid Unif(0, 1): a) ShowX(j) ∼Beta(j,n+1−j) b)Find the joint pdf between X(1) and X(n) c) Show the conditional pdf X(1)|X(n) ∼ X(n)Beta(1, n − 1
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT