Question

If the velocity at time t for a particle moving along a straight line is proportional...

If the velocity at time t for a particle moving along a straight line is proportional to the square root of its position x, write a differential equation that fits this description.

Homework Answers

Answer #1

The solution is attached

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If the velocity at time t for a particle moving along a straight line is proportional...
If the velocity at time t for a particle moving along a straight line is proportional to the square root of its position x, write a differential equation that fits this description
A particle is moving along a straight line, and its position is defined by s =...
A particle is moving along a straight line, and its position is defined by s = (t2 - 6t +6) m. At t=6 seconds, find the following : a. the acceleration of the particle b. The average speed c. the average velocity
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}....
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}. Its initial velocity is v( 0 ) = 4 m / s and its initial displacement is s( 0 ) = 5 m. Find the position of the particle at t = 1 seconds.
The trajectory of a particle moving on a straight line is x(t) = A cos ωt...
The trajectory of a particle moving on a straight line is x(t) = A cos ωt + B sin ωt. a) What are the units for the fixed numbers A, B and ω (the greek letter omega), assuming that x is measured in meters and t in seconds? b) There is a shortest non-zero time T such that x(t + T) = x(t); what is it? c) What is the velocity of the particle? d) What are the initial position...
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}....
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}. Its initial velocity is: v(0) = 4 m/ and its initial displacement is s(0) = 5 ms. Find the position of the particle at t = 1 seconds. 10  m 5  m 11  m 4  m 2m
1. The velocity of a particle moving in a straight line is given by the function...
1. The velocity of a particle moving in a straight line is given by the function v (t) = 1.0t ^ 2 + 5.0 (m / s). Find the total displacement of the particle from t = 0 to t = 5.0 (s) using the definite integral of the function. 2. Find the position function for the following velocity function at t = 7.2t + 5.4 (m / s2), where we know that the initial velocity of the particle is...
The displacement (in centimeters) of a particle moving back and forth along a straight line is...
The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion s = 4 sin(πt) + 5 cos(πt), where t is measured in seconds. (Round your answers to two decimal places.) (a) Find the average velocity during each time period. (i)    [1, 2] cm/s (ii)    [1, 1.1] cm/s (iii)    [1, 1.01] m/s (iv)    [1, 1.001] (b) Estimate the instantaneous velocity of the particle when t = 1.
The velocity of a particle moving along a line is a function of time given by  v(t)=81/(t2+9t+18)....
The velocity of a particle moving along a line is a function of time given by  v(t)=81/(t2+9t+18). Find the distance that the particle has traveled after t=9 seconds if it started at t=0 seconds.
A particle that moves along a straight line has velocity v ( t ) = t^2e^−...
A particle that moves along a straight line has velocity v ( t ) = t^2e^− 2t meters per second after t seconds. How many meters will it travel during the first t seconds (from time=0 to time=t)?
The velocity-time graph of a particle moving along the x-axis is shown. The particle has zero...
The velocity-time graph of a particle moving along the x-axis is shown. The particle has zero velocity at t = 0.00 s and reaches a maximum velocity, vmax, after a total elapsed time, ttotal. If the initial position of the particle is x0 = 7.29 m, the maximum velocity of the particle is vmax = 11.3 m/s, and the total elapsed time is ttotal = 25.0 s, what is the particle's position at t = 16.7 s? b. At t...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT