Question

Determine the set Z(GL(2,R)) explicitly. Prove your assertion!

  1. Determine the set Z(GL(2,R)) explicitly. Prove your assertion!

Homework Answers

Answer #1

GL(2,R)=GL2(R) It is different notations.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that the set S = {(x, y, z) ∈ R 3 : x + y...
Prove that the set S = {(x, y, z) ∈ R 3 : x + y + z = b}. is a subspace of R 3 if and only if b = 0.
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row...
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row 1(a b) row 2 (0 a) | a in R*, b in R} (a) Prove that G is a subgroup of GL(2,R) (b) Prove that G is Abelian
Show that GL(2, R) acts transitively on R^2 − {0}. Hint: Let v, w ∈ R^2...
Show that GL(2, R) acts transitively on R^2 − {0}. Hint: Let v, w ∈ R^2 be any nonzero vectors and consider polar coordinates.
Problem 2. Let F : R → R be any function (not necessarily measurable!). Prove that...
Problem 2. Let F : R → R be any function (not necessarily measurable!). Prove that the set of points x ∈ R such that F(y) ≤ F(x) ≤ F(z) for all y ≤ x and z ≥ x is Borel set.
5. Prove or disprove the following statements: (a) Let R be a relation on the set...
5. Prove or disprove the following statements: (a) Let R be a relation on the set Z of integers such that xRy if and only if xy ≥ 1. Then, R is irreflexive. (b) Let R be a relation on the set Z of integers such that xRy if and only if x = y + 1 or x = y − 1. Then, R is irreflexive. (c) Let R and S be reflexive relations on a set A. Then,...
Fix a ∈ C and b ∈ R. Show (prove) that the equation |z^2|+Re(az)+b = 0...
Fix a ∈ C and b ∈ R. Show (prove) that the equation |z^2|+Re(az)+b = 0 has a solution if and only if |a2| ≥ 4b. When solutions exist show the solution set is a circle.
13. Let R be a relation on Z × Z be defined as (a, b) R...
13. Let R be a relation on Z × Z be defined as (a, b) R (c, d) if and only if a + d = b + c. a. Prove that R is an equivalence relation on Z × Z. b. Determine [(2, 3)].
Determine whether the relation R on N is reflexive, symmetric, and/or transitive. Prove your answer. a)R...
Determine whether the relation R on N is reflexive, symmetric, and/or transitive. Prove your answer. a)R = {(x,y) : x,y ∈N,2|x,2|y}. b)R = {(x,y) : x,y ∈ A}. A = {1,2,3,4} c)R = {(x,y) : x,y ∈N,x is even ,y is odd }.
Determine if H is subgroup of G, if so prove it, if not explain 1. H...
Determine if H is subgroup of G, if so prove it, if not explain 1. H = {A in GL(2,c): det(A)3 =1}, G = GL(2,c) with matrix multiplication 2. H = {A belongs to GL(n,IR): get(A)=-1}, G=GL(n,IR) with matrix multiplication 3. H = {A belongs to GL(2,IR): AAT=I}, G=GL(2,IR) with matrix multiplication
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT