Question

Let a1 = [ 7 2 -1 ] a2 =[ -1 2 3 ] a3= [...

Let a1 = [

7
2
-1

]

a2 =[

-1
2
3

]

a3= [

6
4
9

]

a.)determine whether a1 a2 and a3span R3

b.) is a3 in the Span {a1, a2}?

Homework Answers

Answer #1

Thank You !

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Events A1,A2, and A3 form a partition of sample space S with Pr(A1)=3/7, Pr(A2)=3/7, Pr(A3)=1/7. E...
Events A1,A2, and A3 form a partition of sample space S with Pr(A1)=3/7, Pr(A2)=3/7, Pr(A3)=1/7. E is an event in S with Pr(E|A1)=3/5, Pr(E|A2)=2/5, and Pr(E|A3)=3/5. What is Pr(E)? What is Pr(A2|E)? What is Pr(E')? What is Pr(A2'|E')?
1. Let |a2| = |a6| and a3=1, find an 2. 4. consecutive terms whose sum =...
1. Let |a2| = |a6| and a3=1, find an 2. 4. consecutive terms whose sum = 40 a2 * a3 = a1*a4 +8, find a1,a2,a3,a4
A'1(x)=2A1(x)-A2(x)-A3(x) A'2(x)=-A1(x)+2A2(x)-A3(x) A'3(x)=-A1(x)-A2(x)+2A3(x) with A1(0) = 0, A2(0) = 1, and A3(0) = 5 being initial...
A'1(x)=2A1(x)-A2(x)-A3(x) A'2(x)=-A1(x)+2A2(x)-A3(x) A'3(x)=-A1(x)-A2(x)+2A3(x) with A1(0) = 0, A2(0) = 1, and A3(0) = 5 being initial values solve linear differential equations
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai...
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations (a1, a2, a3, · · ·) + (b1, b2, b3, · · ·) = (a1 + b1, a2 + b2, a3 + b3, · · ·), (a1, a2, a3, · · ·) · (b1, b2, b3, · · ·) = (a1 · b1, a2 · b2, a3 ·...
(4) Prove that, if A1, A2, ..., An are countable sets, then A1 ∪ A2 ∪...
(4) Prove that, if A1, A2, ..., An are countable sets, then A1 ∪ A2 ∪ ... ∪ An is countable. (Hint: Induction.) (6) Let F be the set of all functions from R to R. Show that |F| > 2 ℵ0 . (Hint: Find an injective function from P(R) to F.) (7) Let X = {1, 2, 3, 4}, Y = {5, 6, 7, 8}, T = {∅, {1}, {4}, {1, 4}, {1, 2, 3, 4}}, and S =...
Given the augmented matrix, Find a linear combination of a1, a2, and a3 to produce b....
Given the augmented matrix, Find a linear combination of a1, a2, and a3 to produce b. Verify that this produces b. 1 0 3 10 -1 8 5 6 1 -2 1 6
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
1) Suppose a1, a2, a3, ... is a sequence of integers such that a1 =1/16 and...
1) Suppose a1, a2, a3, ... is a sequence of integers such that a1 =1/16 and an = 4an−1. Guess a formula for an and prove that your guess is correct. 2) Show that given 5 integer numbers, you can always find two of the numbers whose difference will be a multiple of 4. 3) Four cats and five mice form a row. In how many ways can they form the row if the mice are always together? Please help...
Events A1, A2, and A3 form a partiton of sample space S with Pr(A1)=27, Pr(A2)=47, and...
Events A1, A2, and A3 form a partiton of sample space S with Pr(A1)=27, Pr(A2)=47, and Pr(A3)=17.  E is an event in S with Pr(E|A1)=35,  Pr(E|A2)=25, and Pr(E|A3)=15. What is Pr(E)?    What is Pr(A1|E)?    What is Pr(E′)?    What is Pr(A′1|E′)?    Enter your answers as whole numbers or fractions in lowest terms.