Question

Let Zn = {0, 1, 2, . . . , n − 1}, let · represent...

Let Zn = {0, 1, 2, . . . , n − 1}, let · represent multiplication (mod n), and let a ∈ Zn. Prove that there exists b ∈ Zn such that a · b = 1 if and only if gcd(a, n) = 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove: Let n ∈ N, a ∈ Z, and gcd(a,n) = 1. For i,j ∈ N,...
Prove: Let n ∈ N, a ∈ Z, and gcd(a,n) = 1. For i,j ∈ N, aj ≡ ai (mod n) if and only if j ≡ i (mod ordn(a)). Where ordn(a) represents the order of a modulo n. Be sure to prove both the forward and backward direction.
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n). (b) Prove or disprove: Suppose p is a positive prime. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).
(2) Letn∈Z+ withn>1. Provethatif[a]n isaunitinZn,thenforeach[b]n ∈Zn,theequation[a]n⊙x=[b]n has a unique solution x ∈ Zn. Note: You must...
(2) Letn∈Z+ withn>1. Provethatif[a]n isaunitinZn,thenforeach[b]n ∈Zn,theequation[a]n⊙x=[b]n has a unique solution x ∈ Zn. Note: You must find a solution to the equation and show that this solution is unique. (3) Let n ∈ Z+ with n > 1, and let [a]n, [b]n ∈ Zn with [a]n ̸= [0]n. Prove that, if the equation [a]n ⊙ x = [b]n has no solution x ∈ Zn, then [a]n must be a zero divisor.
(Adam’s Theorem) Prove that a ∈ Zn is a cyclic generator of Zn (i.e. hai =...
(Adam’s Theorem) Prove that a ∈ Zn is a cyclic generator of Zn (i.e. hai = Zn) if and only if gcd(a, n) = 1. (b) Find all cyclic generators of Z24.
In this question we show that we can use φ(n)/2. Let n = pq. Let x...
In this question we show that we can use φ(n)/2. Let n = pq. Let x be a number so that gcd(x, n) = 1. Show that x φ(n)/2 = 1 mod p and x φ(n)/2 = 1 mod q, Show that this implies that and x φ(n)/2 = 1 mod n
(a) Let N be an even integer, prove that GCD (N + 2, N) = 2....
(a) Let N be an even integer, prove that GCD (N + 2, N) = 2. (b) What’s the GCD (N + 2, N) if N is an odd integer?
Let gcd(m1,m2) = 1. Prove that a ≡ b (mod m1) and a ≡ b (mod...
Let gcd(m1,m2) = 1. Prove that a ≡ b (mod m1) and a ≡ b (mod m2) if and only if (meaning prove both ways) a ≡ b (mod m1m2). Hint: If a | bc and a is relatively prime to to b then a | c.
Let A be an n×n matrix. If there exists k > n such that A^k =0,then...
Let A be an n×n matrix. If there exists k > n such that A^k =0,then (a) prove that In − A is nonsingular, where In is the n × n identity matrix; (b) show that there exists r ≤ n such that A^r= 0.
Let |a| = n. Prove that <a^i> = <a^j> if and only if gcd(n,i) = gcd...
Let |a| = n. Prove that <a^i> = <a^j> if and only if gcd(n,i) = gcd (n,j) and |a^i| = |a^j| if and only if gcd(n,i) = gcd(n,j).
Let a, b, c, m be integers with m > 0. Prove the following: (a) ”a...
Let a, b, c, m be integers with m > 0. Prove the following: (a) ”a ≡ 0 (mod 2) if and only if a is even” and ”a ≡ 1 (mod 2) if and only if a is odd”. (b) a ≡ b (mod m) if and only if a − b ≡ 0 (mod m) (c) a ≡ b (mod m) if and only if (a mod m) = (b mod m). Recall from Definition 8.10 that (a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT