Question

Prove that every real number is a limit point of the rationals.

Prove that every real number is a limit point of the rationals.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Prove: Any real number is an accumulation point of the set of rational number. 2)...
1) Prove: Any real number is an accumulation point of the set of rational number. 2) prove: if A ⊆ B and A,B are bounded then supA ≤ supB . 3) Give counterexample: For two sequences {an} and {bn}, if {anbn} converges then both sequences are convergent.
Prove a) if p is a limit point of A and p no belongs to A...
Prove a) if p is a limit point of A and p no belongs to A show that p is a boundary point of A b) if A1,A2,A3 are open then A1intersect A2 intersct A3 is open
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
Rewrite the statement “a real number x is not the limit of a sequence of real...
Rewrite the statement “a real number x is not the limit of a sequence of real numbers x1, x2,· · ·” by using quantifiers explicitly.
Let w be a non-real complex number. Show that every complex number z can be written...
Let w be a non-real complex number. Show that every complex number z can be written in the form ? = ? + ?? (?, ? ∈ ?) Furthermore, prove that a and b are uniquely determined by w and z.
Let λ be a positive irrational real number. If n is a positive integer, choose by...
Let λ be a positive irrational real number. If n is a positive integer, choose by the Archimedean Property an integer k such that kλ ≤ n < (k + 1)λ. Let φ(n) = n − kλ. Prove that the set of all φ(n), n > 0, is dense in the interval [0, λ]. (Hint: Examine the proof of the density of the rationals in the reals.)
Prove 1/4 is not a limit point of 1/n where n is a positive integer.
Prove 1/4 is not a limit point of 1/n where n is a positive integer.
Prove that if A is a nonsingular nxn matrix, then so is cA for every nonzero...
Prove that if A is a nonsingular nxn matrix, then so is cA for every nonzero real number c.
Prove that there is a positive real number x such that x2 - 2 = 0....
Prove that there is a positive real number x such that x2 - 2 = 0. What you'll need: Definition of a real number, definition of positive, definition of zero, and definition of Cauchy.
prove that every graph has an even number of odd nodes
prove that every graph has an even number of odd nodes
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT