Question

A curve traces the intersection point of two lines. The first line is flat, starts at...

A curve traces the intersection point of two lines. The first line is flat, starts at height 1, and moves down with constant speed. The second line is through the origin, starts off vertical, and rotates at a constant angular speed. Both lines reach the x-axis at the same time.

a. Find an equation for the curve tracing the intersection.

b. Use L’Hopital’s rule to find the intersection point of the curve with the x-axis.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f(x)=x^2 Find the first coordinate of the intersection point of the two tangent lines of...
Let f(x)=x^2 Find the first coordinate of the intersection point of the two tangent lines of f at 1 and at 5.
A 44.0-cm diameter disk rotates with a constant angular acceleration of 3.00 rad/s2. It starts from...
A 44.0-cm diameter disk rotates with a constant angular acceleration of 3.00 rad/s2. It starts from rest at t = 0, and a line drawn from the center of the disk to a point P on the rim of the disk makes an angle of 57.3° with the positive x-axis at this time. (a) At t = 2.48 s, find the angular speed of the wheel. rad/s (b) At t = 2.48 s, find the magnitude of the linear velocity...
Two trains are on a collision course along the x axis. The first train starts at...
Two trains are on a collision course along the x axis. The first train starts at the origin and moves with constant velocity v1=3.7 m/s. The second train starts from rest at some unknown positive x position D, and accelerates with a2=-0.79 m/s2 . The trains collide in a time t=28 s. Find the distance D.
Two trains are on a collision course along the x axis. The first train starts at...
Two trains are on a collision course along the x axis. The first train starts at the origin and moves with constant velocity v1=3.8 m/s. The second train starts from rest at some unknown positive x position D, and accelerates with a2=-0.70 m/s2 . The trains collide in a time t=22 s. Find the distance D.
Two trains are on a collision course along the x axis. The first train starts at...
Two trains are on a collision course along the x axis. The first train starts at the origin and moves with constant velocity v1=3.2 m/s. The second train starts from rest at some unknown positive x position D, and accelerates with a2=-0.43 m/s2 . The trains collide in a time t=25 s. Find the distance D.
3. Consider the following two lines: x = c + t, y = 1 + t,...
3. Consider the following two lines: x = c + t, y = 1 + t, z = 5 + t and x = t, y = 1 - t, z = 3 + t. Is there a value c that makes the two lines intersect? If so, find it. Otherwise, give a reason. 4. A particle starts at the origin and moves along the shortest path to the line determined by the two points P =(1,2,3) and Q =(3,-2,-1)....
Anna and Bonnie are located on a straight line in the following way: Anna is standing...
Anna and Bonnie are located on a straight line in the following way: Anna is standing at the origin of the x-axis and when Bonnie is located 20 m away in the positive x direction, running at the constant speed of 4.6m/s toward Anna, Anna begins running toward Bonnie with a constant acceleration of 1.8m/s2 . (a) Using the diagram below, provide all information given (i.e. Anna’s and Bonnie’s initial velocities and accelerations, marking any vectors in the diagram corresponding...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...
A quarterback is set up to throw the football to a receiver who is running with...
A quarterback is set up to throw the football to a receiver who is running with a constant velocity ~vr directly away from the quarterback and is now a distance D away from the quarterback. The quarterback estimates that the ball must be thrown at an angle θ to the horizontal and the receiver must catch the ball a time interval tc after it is thrown. Assume the ball is thrown and caught at the same height y = 0...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at point A and ending at point B. The total time from A to B is 1.50 min. How much work did gravity do on the rock between A and B? A) 625 J B) 20.0 J C) 275 J D) 75 J E) 0 J 22) A person carries a 2.00-N pebble through the path shown in the figure, starting at point A and...