Question

Use the method of direct proof to show that for any positive 5-digit integer n, if...

  1. Use the method of direct proof to show that for any positive 5-digit integer n, if n is divisible by 9, then some of its digits is divisible by 9 too.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Disprove (using any proof method) For every positive integer n, the integer n n−1 is even
Disprove (using any proof method) For every positive integer n, the integer n n−1 is even
Ask user to input any 5-digit positive integer value. Calculate the sum of digits of that...
Ask user to input any 5-digit positive integer value. Calculate the sum of digits of that number. Assume that the number is positive, integer, 5-digit. Example: 29107 should calculate 2+9+1+0+7 and get 19 Hint: Use the % operator to extract a digit from a number. Use loop(s) Must be in Java
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive...
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive integer n.
Use a proof by induction to show that, −(16−11?) is a positive number that is divisible...
Use a proof by induction to show that, −(16−11?) is a positive number that is divisible by 5 when ? ≥ 2. Prove (using a formal proof technique) that any sequence that begins with the first four integers 12, 6, 4, is neither arithmetic nor geometric.
Let n be a positive integer. Show that every abelian group of order n is cyclic...
Let n be a positive integer. Show that every abelian group of order n is cyclic if and only if n is not divisible by the square of any prime.
Show that, for any integer n ≥ 2, (n + 1)n − 1 is divisible by...
Show that, for any integer n ≥ 2, (n + 1)n − 1 is divisible by n2 . (Hint: Use the Binomial Theorem.)
Use the method of direct proof to prove the following statements. 26. Every odd integer is...
Use the method of direct proof to prove the following statements. 26. Every odd integer is a difference of two squares. (Example 7 = 4 2 −3 2 , etc.) 20. If a is an integer and a^ 2 | a, then a ∈ { −1,0,1 } 5. Suppose x, y ∈ Z. If x is even, then x y is even.
Suppose that Y has a gamma distribution with α = n/2 for some positive integer n...
Suppose that Y has a gamma distribution with α = n/2 for some positive integer n and β equal to some specified value. Use the method of moment-generating functions to show that W = 2Y/β has a χ2 distribution with n degrees of freedom. (Please show all work, proof used, and logic to justify the answer. Thank, you)
DISCRETE MATHEMATICS PROOF PROBLEMS 1. Use a proof by induction to show that, −(16 − 11?)...
DISCRETE MATHEMATICS PROOF PROBLEMS 1. Use a proof by induction to show that, −(16 − 11?) is a positive number that is divisible by 5 when ? ≥ 2. 2.Prove (using a formal proof technique) that any sequence that begins with the first four integers 12, 6, 4, 3 is neither arithmetic, nor geometric.
Show that, for any positive integer n, n lines ”in general position” (i.e. no two of...
Show that, for any positive integer n, n lines ”in general position” (i.e. no two of them are parallel, no three of them pass through the same point) in the plane R2 divide the plane into exactly n2+n+2 regions. (Hint: Use the fact that an nth line 2 will cut all n − 1 lines, and thereby create n new regions.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT