Question

1.Let y=6x^2. Find a parametrization of the osculating circle at the point x=4. 2. Find the...

1.Let y=6x^2. Find a parametrization of the osculating circle at the point x=4.

2. Find the vector OQ−→− to the center of the osculating circle, and its radius R at the point indicated. r⃗ (t)=<2t−sin(t), 1−cos(t)>,t=π

3. Find the unit normal vector N⃗ (t) of r⃗ (t)=<10t^2, 2t^3> at t=1.

4. Find the normal vector to r⃗ (t)=<3⋅t,3⋅cos(t)> at t=π4.

5. Evaluate the curvature of r⃗ (t)=<3−12t, e^(2t−24), 24tt2> at the point t=12.

6. Calculate the curvature function for r⃗ (t)=<7, e^1t, 10t>.

7. Let r⃗ (t)=<11cost, 11sint> Find a parametrization of the osculating circle at the point t=π2.

Homework Answers

Answer #1

According to rules and regulations, we are allow to do only one question at a time.. i provide you 2 solution..question 5 and 6

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let y = x 2 + 3 be a curve in the plane. (a) Give a...
Let y = x 2 + 3 be a curve in the plane. (a) Give a vector-valued function ~r(t) for the curve y = x 2 + 3. (b) Find the curvature (κ) of ~r(t) at the point (0, 3). [Hint: do not try to find the entire function for κ and then plug in t = 0. Instead, find |~v(0)| and dT~ dt (0) so that κ(0) = 1 |~v(0)| dT~ dt (0) .] (c) Find the center and...
A space curve C is parametrically parametrically defined by x(t)=e^t^(2) −10, y(t)=2t^(3/2) +10, z(t)=−π, t∈[0,+∞). (a)...
A space curve C is parametrically parametrically defined by x(t)=e^t^(2) −10, y(t)=2t^(3/2) +10, z(t)=−π, t∈[0,+∞). (a) What is the vector representation r⃗(t) for C ? (b) Is C a smooth curve? Justify your answer. (c) Find a unit tangent vector to C . (d) Let the vector-valued function v⃗ be defined by v⃗(t)=dr⃗(t)/dt Evaluate the following indefinite integral ∫(v⃗(t)×i^)dt. (cross product)
Find the equation of the osculating circle at the local minimum of f(x)=3x^3−5x^2+(0/1)x+5
Find the equation of the osculating circle at the local minimum of f(x)=3x^3−5x^2+(0/1)x+5
1).Find the parametrization of the line through (2,8) with slope 13 for given ?(?)=4?. (Use symbolic...
1).Find the parametrization of the line through (2,8) with slope 13 for given ?(?)=4?. (Use symbolic notation and fractions where needed.) 2). Use the formula for the slope of the tangent line to find ??/?? of ?(?)=(sin(6?), cos(7?)) at the point ?=?/2 (Use symbolic notation and fractions where needed.) 3).Find the equation of the tangent line to the cycloid generated by a circle of radius ?=1 at ?=5?/6. (Use symbolic notation and fractions where needed. ) 4). Let ?(?)=(2?^2−3,4?^2−16?). Find...
Let w = (x 2 -z)/ y4 , x = t3+7, y = cos(2t), z =...
Let w = (x 2 -z)/ y4 , x = t3+7, y = cos(2t), z = 4t. Use the Chain Rule to express dw/ dt in terms of t. Then evaluate dw/ dt at t = π/ 2
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if...
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if f′′(t)=2et+3sin(t),f(0)=−8,f(π)=−9. f(t)= 4. Find the most general antiderivative of f(x)=6ex+9sec2(x),f(x)=6ex+9sec2⁡(x), where −π2<x<π2. f(x)= 5. Find the antiderivative FF of f(x)=4−3(1+x2)−1f(x)=4−3(1+x2)−1 that satisfies F(1)=8. f(x)= 6. Find ff if f′(x)=4/sqrt(1−x2)  and f(1/2)=−9.
Let c(t) = (t^2, t sin(π t), t cos(π t)). Find the intersection point of the...
Let c(t) = (t^2, t sin(π t), t cos(π t)). Find the intersection point of the tangent line to c at t = 3 with the yz-plane?
Let F ( x , y ) = 〈 e^x + y^2 − 3 , −...
Let F ( x , y ) = 〈 e^x + y^2 − 3 , − e ^(− y) + 2 x y + 4 y 〉. a) Determine if F ( x , y ) is a conservative vector field and, if so, find a potential function for it. b) Calculate ∫ C F ⋅ d r where C is the curve parameterized by r ( t ) = 〈 2 t , 4 t + sin ⁡ π...
At what point do the curves r1 =〈 t , 1 − t , 3 +...
At what point do the curves r1 =〈 t , 1 − t , 3 + t2 〉 and r2 = 〈 3 − s , s − 2 , s2 〉 intersect? Find the angle of intersection. Determine whether the lines L1 : r1 = 〈 5 − 12t , 3 + 9t ,1 − 3t 〉 and L2 : r2 = 〈 3 + 8s , −6s , 7 + 2s 〉are parallel, skew, or intersecting. Explain. If...
1. (1 point) Find the distance the point P(1, -6, 7), is to the plane through...
1. (1 point) Find the distance the point P(1, -6, 7), is to the plane through the three points Q(-1, -1, 5), R(-5, 2, 6), and S(3, -4, 8). 2. (1 point) For the curve given by r(t)=〈−7t,−4t,1+7t2〉r(t)=〈−7t,−4t,1+7t2〉, Find the derivative r′(t)=〈r′(t)=〈  ,  ,  〉〉 Find the second derivative r″(t)=〈r″(t)=〈  ,  ,  〉〉 Find the curvature at t=1t=1 κ(1)=κ(1)=