Write down a careful proof of the following. Theorem. Let (a, b) be a possibly infinite open interval and let u ∈ (a, b). Suppose that f : (a, b) −→ R is a function and that lim x−→u f(x) = L ∈ R. Prove that for every sequence an −→ u with an ∈ (a, b), we have t
i know your question is incomplete (last line is incomplete ) ...but i'm doing it..because this is well known question in real analysis...
please like and good rate ...
if you have any doubt you can ask in comment box before hit the dislike option ...because it's demotivate us..
thank you.
Get Answers For Free
Most questions answered within 1 hours.