Question

A mass weighing 10 lb stretches a spring 1/4 foot. This mass is removed and replaced...

A mass weighing 10 lb stretches a spring 1/4 foot. This mass is removed and replaced with a mass of 1.6 slugs, which is initially released from a point 1/3 foot above the equilibrium position with a downward velocity of 3/4 ft/s. Find the first time the mass will be positioned half of the amplitude below the equilibrium.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass weighing 24 pounds attached to the end of the spring and stretches it 4...
A mass weighing 24 pounds attached to the end of the spring and stretches it 4 inches. The mass is initially released from rest from a point 3 inches above the equilibrium position with a downward velocity of 2 ft/sec. Find the equation of the motion?  
A mass weighing 16 pounds stretches a spring 1 feet. It is initially released from a...
A mass weighing 16 pounds stretches a spring 1 feet. It is initially released from a point 1 foot above the equilibrium position with an upward velocity of 6 ft/s. Find the equation of motion. Determine the amplitude, period, and frequency of motion. (Use g = 32 ft/s2 for the acceleration due to gravity.)
A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward,...
A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting the spring a distance of 1 in, and then set in motion with a downward velocity of 2 ft/s, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period, amplitude, and phase of the motion
A mass weighing 4 pounds is attached to a spring whose constant is 2 lb/ft. The...
A mass weighing 4 pounds is attached to a spring whose constant is 2 lb/ft. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 12 ft/s. Determine the time at which the mass passes through the equilibrium position. (Use g = 32 ft/s2 for the acceleration due to gravity.) s Find the time after the mass...
A mass weighing 8 pounds stretches a spring 2 feet. At t=0 the mass is released...
A mass weighing 8 pounds stretches a spring 2 feet. At t=0 the mass is released from a point 2 feet above the equilibrium position with a downward velocity of 4 (ft/s), determine the motion of the mass.
A mass weighing 32 pounds stretches a spring 2 feet. The mass is initially released from...
A mass weighing 32 pounds stretches a spring 2 feet. The mass is initially released from rest from a point 1 foot below the equilibrium position with an upward velocity of 2ft/sec. find the equation of the motion and solve it, determine the period and amplitude.
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches....
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. initially, the mass is released from rest from a point of 2 inches above the equilibrium position. find the equation of motion. (g= 32 ft/s^2)
Suppose a mass weighing 64 lb stretches a spring 2 ft. If the weight is released...
Suppose a mass weighing 64 lb stretches a spring 2 ft. If the weight is released from rest from 2 ft below the equilibrium position, find the equation of motion x(t) (using Laplace transforms) if an impressed force f(t) = 2 sint acts on the system for 0≤t≤2πand is then removed. Ignore any damping forces.
Determine C1 and C2 of the following damped motion A 4-lb weight stretches a spring 4...
Determine C1 and C2 of the following damped motion A 4-lb weight stretches a spring 4 ft. Initially the weight released from 2ft above equilibrium position with downward velocity 2 ft/sec. Find the equation of motion x(t), provided that the subsequent motion takes place in a medium that offers a damping force numerically equal to (1/2) times the instantaneous velocity
A mass weighing 19.6 N stretches a spring 9.8 cm. The mass is initially released from...
A mass weighing 19.6 N stretches a spring 9.8 cm. The mass is initially released from a point 2/3 meter above the equilibrium position with a downward velocity of 5 m/sec. (a) Find the equation of motion. (b)Assume that the entire spring-mass system is submerged in a liquid that imparts a damping force numerically equal to β (β > 0) times the instantaneous velocity. Determine the value of β so that the subsequent motion is overdamped.