Question

prove that n> 1 and (n-1)!congruence -1(mod n) then n is prime

prove that n> 1 and (n-1)!congruence -1(mod n) then n is prime

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let p be a prime that is congruent to 3 mod 4. Prove that there is...
Let p be a prime that is congruent to 3 mod 4. Prove that there is no solution to the congruence x2≡−1 modp. (Hint: what would be the order of x?)
Prove that n is prime iff every linear equation ax ≡ b mod n, with a...
Prove that n is prime iff every linear equation ax ≡ b mod n, with a ≠ 0 mod n, has a unique solution x mod n.
Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z : (1) For every...
Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z : (1) For every a ∈ Z, a = a mod n. (2) If a = b mod n then b = a mod n. (3) If a = b mod n and b = c mod n, then a = c mod n
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How...
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How many equivalence classes does it have? 9f) fix n ∈ ℕ. Prove that if a ≡ b mod n and c ≡ d mod n then a + c ≡b + d mod n. 9g) fix n ∈ ℕ.Prove that if a ≡ b mod n and c ≡ d mod n then ac ≡bd mod n.
Let p be be prime and p ≡ 1 (mod 4|a|). Prove that a is a...
Let p be be prime and p ≡ 1 (mod 4|a|). Prove that a is a quadratic residue mod p.
1. (i) find all solutions for the following congruence 370x ≡ 80 (mod 200) (ii) find...
1. (i) find all solutions for the following congruence 370x ≡ 80 (mod 200) (ii) find the first two positive solutions to the system of 3 congruence equations x ≡ 3 (mod 9) x ≡ 9 (mod 12) x ≡ 7 (mod 22) (notice how the m1, m2, m3 are not co-prime!)
In number theory, Wilson’s theorem states that a natural number n > 1 is prime if...
In number theory, Wilson’s theorem states that a natural number n > 1 is prime if and only if (n − 1)! ≡ −1 (mod n). (a) Check that 5 is a prime number using Wilson’s theorem. (b) Let n and m be natural numbers such that m divides n. Prove the following statement “For any integer a, if a ≡ −1 (mod n), then a ≡ −1 (mod m).” You may need this fact in doing (c). (c) The...
Solve the linear congruence x = 2 mod (7) x = 1 mod (3)
Solve the linear congruence x = 2 mod (7) x = 1 mod (3)
Let gcd(m1,m2) = 1. Prove that a ≡ b (mod m1) and a ≡ b (mod...
Let gcd(m1,m2) = 1. Prove that a ≡ b (mod m1) and a ≡ b (mod m2) if and only if (meaning prove both ways) a ≡ b (mod m1m2). Hint: If a | bc and a is relatively prime to to b then a | c.
Prove: If p is prime and p ≡ 7 (mod 8), then p | 2(p−1)/2 −...
Prove: If p is prime and p ≡ 7 (mod 8), then p | 2(p−1)/2 − 1. (Hint: Use the Legendre symbol (2/p) and Euler's criterion.)