Question

Suppose x=c1e−t+c2e^5t. Verify that x=c1e^−t+c2e^5t is a solution to x′′−4x′−5x=0 by substituting it into the differential...

Suppose x=c1e−t+c2e^5t. Verify that x=c1e^−t+c2e^5t is a solution to x′′−4x′−5x=0 by substituting it into the differential equation. (Enter the terms in the order given. Enter c1 as c1 and c2 as c2.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find a homogeneous linear differential equation with constant coefficients whose general solution is given: c1e^(x)sin4x+c2e^(x)cos4x
find a homogeneous linear differential equation with constant coefficients whose general solution is given: c1e^(x)sin4x+c2e^(x)cos4x
Verify that the function ϕ(t)=c1e^−t+c2e^−2t is a solution of the linear equation y′′+3y′+2y=0 for any choice...
Verify that the function ϕ(t)=c1e^−t+c2e^−2t is a solution of the linear equation y′′+3y′+2y=0 for any choice of the constants c1c1 and c2c2. Determine c1c1 and c2c2 so that each of the following initial conditions is satisfied: (a) y(0)=−1,y′(0)=4 (b) y(0)=2,y′(0)=0
Show that f(x) = C1e4x + C2e-2x is a solution to the differential equation: y’’ –...
Show that f(x) = C1e4x + C2e-2x is a solution to the differential equation: y’’ – 2y’ – 8y = 0, for all constants C1 and C2. Then find values for C1 and C2 such that y(0) = 1 and y’(0) = 0.
The general solution of the equation y′′+6y′+13y=0 is y=c1e-3xcos(2x)+c2e−3xsin(2x)   Find values of c1 and c2 so...
The general solution of the equation y′′+6y′+13y=0 is y=c1e-3xcos(2x)+c2e−3xsin(2x)   Find values of c1 and c2 so that y(0)=1 and y′(0)=−9. c1=? c2=? Plug these values into the general solution to obtain the unique solution. y=?
Please show all steps, thank you! a) Verify that the functions below solve the system: x(t)...
Please show all steps, thank you! a) Verify that the functions below solve the system: x(t) = c1e^5t + c2e^-t y(t) = 2c1e^5t - c2e^-t Do not solve the system dx/dt = x + 2y dy/dt = 4x +3y b) Solve the system using Operator D elimination. Write the answer both in scalar and vector form. Please show all steps! dx/dt = x + 2y dy/dt = 4x + 3y
Verify that the indicated function is a solution of the given dierentail equation. In some cases...
Verify that the indicated function is a solution of the given dierentail equation. In some cases assume an appropriate interval of validity for the solution. y''+y'-12y=0; y=c1e^3x+c2e^-4x
Solve the differential equation x''(t)+5x'(t)+4x(t)=2
Solve the differential equation x''(t)+5x'(t)+4x(t)=2
Verify that the function y=x^2+c/x^2 is a solution of the differential equation xy′+2y=4x^2, (x>0). b) Find...
Verify that the function y=x^2+c/x^2 is a solution of the differential equation xy′+2y=4x^2, (x>0). b) Find the value of c for which the solution satisfies the initial condition y(4)=3. c=
y = c1 cos(5x) + c2 sin(5x) is a two-parameter family of solutions of the second-order...
y = c1 cos(5x) + c2 sin(5x) is a two-parameter family of solutions of the second-order DE y'' + 25y = 0. If possible, find a solution of the differential equation that satisfies the given side conditions. The conditions specified at two different points are called boundary conditions. (If not possible, enter IMPOSSIBLE.) y(0) = 1, y'(π) = 7 y =
Consider the differential equation: 66t^2y''+12t(t-11)y'-12(t-11)y=5t^3, . You can verify that y1 = 5t and y2 =...
Consider the differential equation: 66t^2y''+12t(t-11)y'-12(t-11)y=5t^3, . You can verify that y1 = 5t and y2 = 4te^(-2t/11)satisfy the corresponding homogeneous equation. The Wronskian W between y1 and y2 is W(t) = (-40/11)t^2e^((-2t)/11) Apply variation of parameters to find a particular solution. yp = ?????