Question

Let R1(t) = < t2+3 , 2t +1, -t+3 > Let R2(s) = < 2s ,...

Let R1(t) = < t2+3 , 2t +1, -t+3 >

Let R2(s) = < 2s , s+1 , s2+2s-6 >

Show that these two curves intersect at a right angle.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At what point do the curves r1 =〈 t , 1 − t , 3 +...
At what point do the curves r1 =〈 t , 1 − t , 3 + t2 〉 and r2 = 〈 3 − s , s − 2 , s2 〉 intersect? Find the angle of intersection. Determine whether the lines L1 : r1 = 〈 5 − 12t , 3 + 9t ,1 − 3t 〉 and L2 : r2 = 〈 3 + 8s , −6s , 7 + 2s 〉are parallel, skew, or intersecting. Explain. If...
At what point do the curves r1 = < t, 3 - t, 16 + t2...
At what point do the curves r1 = < t, 3 - t, 16 + t2 > and r2 = < 8 - s, s - 5, s2 > intersect? ( _____ , _____ , _____ ) Find their angle of intersection, θ correct to the nearest degree. θ = ______ °
a) Determine: L{t^3 e^2t+e^2t sin( 5t)} and b) Find L^(-1) {(3s+2)/(s^2+2s+10)}
a) Determine: L{t^3 e^2t+e^2t sin( 5t)} and b) Find L^(-1) {(3s+2)/(s^2+2s+10)}
Determine whether the lines x = [3−t, 2+t, 8+2t] and x = [2+2s, −2+3s, −2+ 8s]...
Determine whether the lines x = [3−t, 2+t, 8+2t] and x = [2+2s, −2+3s, −2+ 8s] intersect and if so, find the point of intersection.
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3...
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3 + 1 2 t 2 i (a) Find r 0 (t) (b) Find the unit tangent vector to the space curve of r(t) at t = 3. (c) Find the vector equation of the tangent line to the curve at t = 3
Two spacecraft are following paths in space given by r1=〈sin(t),t,t^2〉r1=〈sin⁡(t),t,t^2〉 and r2=〈cos(t),1−t,t^3〉.r2=〈cos⁡(t),1−t,t^3〉. If the temperature for...
Two spacecraft are following paths in space given by r1=〈sin(t),t,t^2〉r1=〈sin⁡(t),t,t^2〉 and r2=〈cos(t),1−t,t^3〉.r2=〈cos⁡(t),1−t,t^3〉. If the temperature for the points is given by T(x,y,z)=x^2y(5−z),T(x,y,z)=x^2y(5−z), use the Chain Rule to determine the rate of change of the difference D in the temperatures the two spacecraft experience at time t=2. (Use decimal notation. Give your answer to two decimal places.)
Determine the interval(s) where r(t)=< t-1/((t^2) -1), 2e^3t , In(t+5) > is continuous. And Both r1(t)...
Determine the interval(s) where r(t)=< t-1/((t^2) -1), 2e^3t , In(t+5) > is continuous. And Both r1(t) = < t2, t4 > and  r2(t) = < t4, t8 > map out the same half parabolic graph. Notice that both r1(1) = < 1, 1 > and  r2(1) = < 1, 1 >. However, r'1(1) = < 2, 4 > and  r'2(1) = < 4, 8 >. Explain why the difference is logical and quantify the difference at t=1. Determine the interval(s) where r(t)=<t −...
Consider the lines in space whose parametric equations are as follows line #1 x=2+3t, y=3-t, z=2t...
Consider the lines in space whose parametric equations are as follows line #1 x=2+3t, y=3-t, z=2t line #2 x=6-4s, y=2+s, z=s-1 a Find the point where the lines intersect. b Compute the angle formed between the two lines. c Compute the equation for the plane that contains these two lines
1.1. Let R be the counterclockwise rotation by 90 degrees. Vectors r1=[3,3] and r2=[−2,3] are not...
1.1. Let R be the counterclockwise rotation by 90 degrees. Vectors r1=[3,3] and r2=[−2,3] are not perpendicular. The inverse U of the matrix M=[r1,r2] has columns perpendicular to r2 and r1, so it must be of the form U=[x⋅R(r2),y⋅R(r1)]^T for some scalars x and y. Find y^−1. 1.2. Vectors r1=[1,1] and r2=[−5,5] are perpendicular. The inverse U of the matrix M=[r1,r2] has columns perpendicular to r2 and r1, so it must be of the form U=[x⋅r1,y⋅r2]^T for some scalars x...
Problem 3 For two relations R1 and R2 on a set A, we define the composition...
Problem 3 For two relations R1 and R2 on a set A, we define the composition of R2 after R1 as R2°R1 = { (x, z) ∈ A×A | (∃ y)( (x, y) ∈ R1 ∧ (y, z) ∈ R2 )} Recall that the inverse of a relation R, denoted R -1, on a set A is defined as: R -1 = { (x, y) ∈ A×A | (y, x) ∈ R)} Suppose R = { (1, 1), (1, 2),...