Question

Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.

Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If Xn is a cauchy sequence and Yn is also a cauchy sequence, then prove that...
If Xn is a cauchy sequence and Yn is also a cauchy sequence, then prove that Xn+Yn is also a cauchy sequence
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as...
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as n approaches infinity. if and only if the limit of (xN) exists and xn approaches 0.
Real Analysis: Suppose f: [0,1] --> R is continuous, and {xn} is a Cauchy sequence in...
Real Analysis: Suppose f: [0,1] --> R is continuous, and {xn} is a Cauchy sequence in [0,1]. Prove or disprove that {f(xn)} is a Cauchy Sequence.
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove...
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove that (xn) is bounded. That is, show that there exists C > 0 such that |xn| less than or equal to C for all n in N.
Use the definition of a Cauchy sequence to prove that the sequence defined by xn =...
Use the definition of a Cauchy sequence to prove that the sequence defined by xn = (3/2)^n is a Cauchy sequence in R.
Let (xn) be Cauchy in (M, d) and a ∈ M. Show that the sequence d(xn,...
Let (xn) be Cauchy in (M, d) and a ∈ M. Show that the sequence d(xn, a) converges in R. (Note: It is not given that xn converges to a. Hint: Use Reverse triangle inequality.)
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn}...
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn} is a sequence of real numbers that converges. Prove that {xn+bn} converges to +infinity.
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where...
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where x does not equal zero; prove that lim n→∞ 1/ xn = 1/x
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn|...
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn| ≤ θn  for n = 1, 2, . . .. a) Show that for any 1 ≤ n < m one has |xm − xn| ≤ (θn/ 1-θ )*(1 − θ m−n ). Conclude that (xn) is Cauchy b)If lim xn = x* , prove the following error in approximation (the "error in approximation" is the same as error estimation in Taylor Theorem) in t:...
Let (sn) ⊂ (0, +∞) be a sequence of real numbers. Prove that liminf 1/Sn =...
Let (sn) ⊂ (0, +∞) be a sequence of real numbers. Prove that liminf 1/Sn = 1 / limsup Sn