Question

Define the relation τ on Z by aτ b if and only if there exists x...

  1. Define the relation τ on Z by aτ b if and only if there exists x ∈ {1,4,16} such that

    ax ≡ b (mod 63).

    1. (a) Prove that τ is an equivalence relation.

    2. (b) Prove that there exists an integer n with 1 ≤ n ≤ 62 such that the equivalence class of n is{m ∈ Z | m ≡ n (mod 63)}.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(9 marks) Define the relation τ on Z by a τ b if and only if...
Define the relation τ on Z by a τ b if and only if there exists x ∈ {1, 4, 16} such that ax ≡ b (mod 63). (a) Prove that τ is an equivalence relation. (b) Prove that there exists an integer n with 1 ≤ n ≤ 62 such that the equivalence class of n is {m ∈ Z | m ≡ n (mod 63)}.
Define a relation R on Z by aRb if and only if |a| = |b|. a)...
Define a relation R on Z by aRb if and only if |a| = |b|. a) Prove R is an equivalence relation b) Compute [0] and [n] for n in Z with n different than 0.
Let R be the relation on Z defined by: For any a, b ∈ Z ,...
Let R be the relation on Z defined by: For any a, b ∈ Z , aRb if and only if 4 | (a + 3b). (a) Prove that R is an equivalence relation. (b) Prove that for all integers a and b, aRb if and only if a ≡ b (mod 4)
Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z : (1) For every...
Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z : (1) For every a ∈ Z, a = a mod n. (2) If a = b mod n then b = a mod n. (3) If a = b mod n and b = c mod n, then a = c mod n
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z...
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z is the whole integers.) 1) Give two real numbers that are in the same equivalence class. 2) Give two real numbers that are not in the same equivalence class. 3) Prove that this relation is an equivalence relation.
Define the relation S on RxR by (x,y)S(a,b) if and only if x^2 + y^2= a^2...
Define the relation S on RxR by (x,y)S(a,b) if and only if x^2 + y^2= a^2 + b^2. a) Prove S in an equivalence relation b) compute [(0,0)], [(1,2)], and [(-3,4)]. c) Draw a picture in R^2 representing these three equivalence classes.
Define a relation on N x N by (a, b)R(c, d) iff ad=bc a. Show that...
Define a relation on N x N by (a, b)R(c, d) iff ad=bc a. Show that R is an equivalence relation. b. Find the equivalence class E(1, 2)
Let A=NxN and define a relation on A by (a,b)R(c,d) when a⋅b=c⋅d a ⋅ b =...
Let A=NxN and define a relation on A by (a,b)R(c,d) when a⋅b=c⋅d a ⋅ b = c ⋅ d . For example, (2,6)R(4,3) a) Show that R is an equivalence relation. b) Find an equivalence class with exactly one element. c) Prove that for every n ≥ 2 there is an equivalence class with exactly n elements.
Let R = {(x, y) | x − y is an integer} be a relation on...
Let R = {(x, y) | x − y is an integer} be a relation on the set Q of rational numbers. a) [6 marks] Prove that R is an equivalence relation on Q. b) [2 marks] What is the equivalence class of 0? c) [2 marks] What is the equivalence class of 1/2?
1. We define a relation C on the set of humans as xRy ⇐⇒ x and...
1. We define a relation C on the set of humans as xRy ⇐⇒ x and y were born in the same country Describe the equivalence class containing yourself as an element. 2. Let R be an equivalence relation with (x, y) ∈ R and (y, z) is not ∈ R (that is, y does not relate to z). Can you determine whether or not xRz? Why or why not?