Question

Let A be a matrix with an eigenvalue λ that has an algebraic multiplicity of k,...

Let A be a matrix with an eigenvalue λ that has an algebraic multiplicity of k, but a geometric multiplicity of p < k, i.e. there are p linearly independent generalised eigenvectors of rank 1 associated with the eigenvalue λ, equivalently, the eigenspace of λ has a dimension of p. Show that the generalised eigenspace of rank 2 has at most dimension 2p.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The matrix A has an eigenvalue λ with an algebraic multiplicity of 5 and a geometric...
The matrix A has an eigenvalue λ with an algebraic multiplicity of 5 and a geometric multiplicity of 2. Does A have a generalised eigenvector of rank 3 corresponding to λ? What about a generalised eigenvector of rank 5?
Which of the following are NECESSARY CONDITIONS for an n x n matrix A to be...
Which of the following are NECESSARY CONDITIONS for an n x n matrix A to be diagonalizable? i) A has n distinct eigenvalues ii) A has n linearly independent eigenvectors iii) The algebraic multiplicity of each eigenvalue equals its geometric multiplicity iv) A is invertible v) The columns of A are linearly independent NOTE: The answer is more than 1 option.
Let P be a stochastic matrix. Show that λ=1 is an eigenvalue of P. What is...
Let P be a stochastic matrix. Show that λ=1 is an eigenvalue of P. What is the associated eigenvector?
2.  For each 3*3 matrix and each eigenvalue below construct a basis for the eigenspace Eλ. A=...
2.  For each 3*3 matrix and each eigenvalue below construct a basis for the eigenspace Eλ. A= (9 42 -30 -4 -25 20 -4 -28 23),λ = 1,3 A= (2 -27 18 0 -7 6 0 -9 8) , λ = −1,2 3. Construct a 2×2 matrix with eigenvectors(4 3) and (−3 −2) with eigen-values 2 and −3, respectively. 4. Let A be the 6*6 diagonal matrix below. For each eigenvalue, compute the multiplicity of λ as a root of the...
The questions this week is about diagonalizability of matrices when we have fewer than n different...
The questions this week is about diagonalizability of matrices when we have fewer than n different eigenvalues. Recall the following facts as starting points: • An n × n matrix is diagonalizable if and only if it has n linearly independent eigenvectors. • Eigenvectors with different eigenvalues must be linearly independent. • The number of times an eigenvalue appears as a root of the characteristic polynomial is at least the dimension of the corresponding eigenspace, and the total degree of...
2. ?̇=??, ?= [3 −18 ; 2 −9]. (1) Find the eigenvalue of multiplicity two and...
2. ?̇=??, ?= [3 −18 ; 2 −9]. (1) Find the eigenvalue of multiplicity two and their corresponding (generalized) eigenvectors ?1= [3;?] and ?2= [?;0] respectively. (2) Let ?= ?^−1??.Find the matrix B. (3) Find ???. (4) Find the general solution of ?̇ = ??. (5) Let ?=??.Find the general solution of ?̇ = ??. (6) Find the solution with initial values x(0) =[4; 1].
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
5. Suppose A is an n × n matrix, whose entries are all real numbers, that...
5. Suppose A is an n × n matrix, whose entries are all real numbers, that has n distinct real eigenvalues. Explain why R n has a basis consisting of eigenvectors of A. Hint: use the “eigenspaces are independent” lemma stated in class. 6. Unlike the previous problem, let A be a 2 × 2 matrix, whose entries are all real numbers, with only 1 eigenvalue λ. (Note: λ must be real, but don’t worry about why this is true)....
Let x1, x2, ..., xk be linearly independent vectors in R n and let A be...
Let x1, x2, ..., xk be linearly independent vectors in R n and let A be a nonsingular n × n matrix. Define yi = Axi for i = 1, 2, ..., k. Show that y1, y2, ..., yk are linearly independent.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT