Question

Does there exist a continuous onto function f : [0, 1] → R? Does there exist...

Does there exist a continuous onto function f : [0, 1] → R? Does there exist a continuous onto function f : (0, 1) → (−1, 0) ∪ (0, 1)?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show there does not exist a sequence of continuous functions fn : [0,1] → R converging...
Show there does not exist a sequence of continuous functions fn : [0,1] → R converging pointwise to the function f : [0,1] → R given by f(x) = 0 for x rational, f(x) = 1 for x irrational.
Find a nonzero function f: R -> R such that (f o f)(r) = 0 for...
Find a nonzero function f: R -> R such that (f o f)(r) = 0 for all r E R. Does there exist such a function that is 1-1? Justify your answer.
For the given function: f [0; 3]→R is continuous, and all of its values are rational...
For the given function: f [0; 3]→R is continuous, and all of its values are rational numbers. It is also known that f(0) = 1. Can you find f(3)?Justification b) Let [x] denote the smallest integer, not larger than x. For instance,[2.65] = 2 = [2], [−1.5] =−2. Caution: [x] is not equal to |x|! Find the points at which the function f : R→R. f(x) = cos([−x] + [x]) has or respectively, does not have a derivative.
Is the function f(x,y)=x−yx+y continuous at the point (−1,−1)? If not, why is the function not...
Is the function f(x,y)=x−yx+y continuous at the point (−1,−1)? If not, why is the function not continuous? Select the correct answer below: A. Yes B. No, because lim(x,y)→(−1,1)x−yx+y=−1 and f(0,0)=0. C. No, because lim(x,y)→(−1,1)x−yx+y does not exist and f(0,0) does not exist. D. No, because lim(x,y)→(0,0)x2−y2x2+y2=1 and f(0,0)=0.
Let f : [0, 1] → R be continuous with [0, 1] ⊆ f([0, 1]). Show...
Let f : [0, 1] → R be continuous with [0, 1] ⊆ f([0, 1]). Show that there is a c ∈ [0, 1] such that f(c) = c.
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0...
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0 for every x ∈ [a,b]. 1) Show that either f(x) > 0 for every x ∈ [a,b] or f(x) < 0 for every x ∈ [a,b]. 2) Assume that f(x) > 0 for every x ∈ [a,b] and prove that there exists ε > 0 such that f(x) ≥ ε for all x ∈ [a,b].
. Let f and g : [0, 1] → R be continuous, and assume f(x) =...
. Let f and g : [0, 1] → R be continuous, and assume f(x) = g(x) for all x < 1. Does this imply that f(1) = g(1)? Provide a proof or a counterexample.
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x)...
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x) /(1+x) is uniformly continuous on (0, ∞) but not uniformly continuous on (−1, 1).
We know that any continuous function f : [a, b] → R is uniformly continuous on...
We know that any continuous function f : [a, b] → R is uniformly continuous on the finite closed interval [a, b]. (i) What is the definition of f being uniformly continuous on its domain? (This definition is meaningful for functions f : J → R defined on any interval J ⊂ R.) (ii) Given a differentiable function f : R → R, prove that if the derivative f ′ is a bounded function on R, then f is uniformly...
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected