Question

Prove the Basic Principal of Difference of squares: If x2 ≡ y2 (mod n) and x...

Prove the Basic Principal of Difference of squares: If x2 ≡ y2 (mod n) and x is not ± y, where x and y lie in the range {0, … , n-1}, then n is composite and has gcd(x-y, n) as a non-trivial factor.

Homework Answers

Answer #1

.

Please comment if needed.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove the Basic Principal of Difference of squares: If x2 ≡ y2 (mod n) and x...
Prove the Basic Principal of Difference of squares: If x2 ≡ y2 (mod n) and x is not ± y, where x and y lie in the range {0, … , n-1}, then n is composite and has gcd(x-y, n) as a non-trivial factor.
Say that x^2 = y^2 mod n, but x != y mod n and x !=...
Say that x^2 = y^2 mod n, but x != y mod n and x != −y mod n. Show that 1 = gcd(x − y, n) implies that n divides x + y, and that this is not possible, Show that n is non-trivial
topology: Prove that the open ball B2: = {(x, y) ∈ R2 | x2 + y2...
topology: Prove that the open ball B2: = {(x, y) ∈ R2 | x2 + y2 <1} in R2 is homeomorphic to the open squared unit C2: = {(x, y) ∈R2 | 0 <x <1.0 <and <1}
Prove that for n ≥ 5, (n−1)! ≡ 0 mod n if and only if n...
Prove that for n ≥ 5, (n−1)! ≡ 0 mod n if and only if n is composite. (Take care to consider why your argument would not work for n ≤ 4. . . )
Prove that there are no rational numbers x and y such that x2 -y2 =1002.​
Prove that there are no rational numbers x and y such that x2 -y2 =1002.​
Prove that n is prime iff every linear equation ax ≡ b mod n, with a...
Prove that n is prime iff every linear equation ax ≡ b mod n, with a ≠ 0 mod n, has a unique solution x mod n.
Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0
Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0
1. Write a proof for all non-zero integers x and y, if there exist integers n...
1. Write a proof for all non-zero integers x and y, if there exist integers n and m such that xn + ym = 1, then gcd(x, y) = 1. 2. Write a proof for all non-zero integers x and y, gcd(x, y) = 1 if and only if gcd(x, y2) = 1.
Answer the following question: 1. a. Use an affine cipher x 7→ 3x + 1 (mod...
Answer the following question: 1. a. Use an affine cipher x 7→ 3x + 1 (mod 26) to encode “Baltimore”. b. Let a and b be integers. What does it mean to say a divides b? Provide a precise definition and include the proper notation. c. Let a, b, c, and n be integers with n 6= 0. Suppose that a ≡ b (mod n) and b ≡ c (mod n). Prove that a ≡ c (mod n). d. Use...
Solve: uxx + uyy = 0 in {(x,y) st x2 + y2 < 1 , x...
Solve: uxx + uyy = 0 in {(x,y) st x2 + y2 < 1 , x > 0, y > 0} u = 0 on x=0 and y=0 ∂u/∂r = 1 on r=1