Question

Use Euler's method to calculate the first three approximations to the given initial value problem for...

Use Euler's method to calculate the first three approximations to the given initial value problem for the specified increment size. Round your results to four decimal places.

y' = 3xy - 3y, y(2) = 4, dx = 0.2

Group of answer choices

A)y1 = 6.4000, y2 = 11.0080, y3 = 20.2547

B)y1 = 8.0000, y2 = 12.3840, y3 = 52.8384

C)y1 = 4.8000, y2 = 6.8800, y3 = 79.2576

D)y1 = 1.6000, y2 = 11.0080, y3 = 42.2707

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Euler's method with step size 0.5 to compute the approximate y-values y1, y2, y3 and...
Use Euler's method with step size 0.5 to compute the approximate y-values y1, y2, y3 and y4 of the solution of the initial-value problem y' = y − 3x, y(4) = 0.y1 = y2 = y3 = y4 =
Use Euler's method with step size 0.5 to compute the approximate y-values y1, y2, y3 and...
Use Euler's method with step size 0.5 to compute the approximate y-values y1, y2, y3 and y4 of the solution of the initial-value problem y' = y − 2x, y(4) = 2. y1= ? y2 = ? y3 = ? y4 = ?
Use Euler's method with step size 0.5 to compute the approximate y-values y1, y2, y3 and...
Use Euler's method with step size 0.5 to compute the approximate y-values y1, y2, y3 and y4 of the solution of the initial-value problem y' = y − 4x, y(4) = 0. y1 = y2 = y3 = y4 =
Use Euler's method with step size 0.5 to compute the approximate y-values y1, y2, y3 and...
Use Euler's method with step size 0.5 to compute the approximate y-values y1, y2, y3 and y4 of the solution of the initial-value problem y' = y − 3x, y(3) = 2. y1 = y2 = y3 = y4 =
Use Euler's method with step size 0.5 to compute the approximate y-values y1 ≈ y(0.5), y2...
Use Euler's method with step size 0.5 to compute the approximate y-values y1 ≈ y(0.5), y2 ≈ y(1), y3 ≈ y(1.5), and y4 ≈ y(2) of the solution of the initial-value problem y′ = 1 + 2x − 2y,    y(0)=1. y1 = y2 = y3 = y4 =
Use Euler's method with step size 0.2 to estimate y(3), where y(x) is the solution of...
Use Euler's method with step size 0.2 to estimate y(3), where y(x) is the solution of the initial-value problem y' = 3 − 3xy, y(2) = 0. (Round your answer to four decimal places.) y(3) =
Use Euler's method to approximate y(0.2), where y(x) is the solution of the initial-value problem y''...
Use Euler's method to approximate y(0.2), where y(x) is the solution of the initial-value problem y'' − 4y' + 4y = 0,  y(0) = −3,  y'(0) = 1. Use h = 0.1. Find the analytic solution of the problem, and compare the actual value of y(0.2) with y2. (Round your answers to four decimal places.) y(0.2) ≈     (Euler approximation) y(0.2) = -2.3869 (exact value) I'm looking for the Euler approximation number, thanks.
Given the initial value problem: y'=6√(t+y),  y(0)=1 Use Euler's method with step size h = 0.1 to...
Given the initial value problem: y'=6√(t+y),  y(0)=1 Use Euler's method with step size h = 0.1 to estimate: y(0.1) = y(0.2) =
Using Euler's method Calculate the exact solution and investigate the accuracy of your approximations. dy/dx=x-xy y(1)=0...
Using Euler's method Calculate the exact solution and investigate the accuracy of your approximations. dy/dx=x-xy y(1)=0 dx=0.2
Use​ Euler's method with step size h=0.2 to approximate the solution to the initial value problem...
Use​ Euler's method with step size h=0.2 to approximate the solution to the initial value problem at the points x=4.2 4.4 4.6 4.8 round to two decimal y'=3/x(y^2+y), y(4)=1