Question

# How many non-negative integer solutions are there to x1+x2+x3+x4+x5 = 60 (a) where x1 <= 17...

How many non-negative integer solutions are there to
x1+x2+x3+x4+x5 = 60
(a) where x1 <= 17 and x2 <= 17
(b) where x1 <= 17 and x2 <= 17 and x3 <= 17 and x4 <= 17

Side question: is there any reason why, for (a), that we can't just give x1 and x2 both 18 "stars" (from the sticks and stars representation of the problem) and then calculate the number of ways to distribute the remaining 60 - (18 * 2) = 24 stars and subtract that from the total number of ways to distribute without any constraint? i.e. answer = (64 choose 4) - (28 choose 4)

#### Earn Coins

Coins can be redeemed for fabulous gifts.

##### Need Online Homework Help?

Most questions answered within 1 hours.

##### Active Questions
• Rolling Two Dice When two dice are rolled, ﬁnd the probability of getting: a. A sum...
• he number of lightening strikes on a square kilometer of open ground in a year has...
• Consider the following. (Give your answer bounds exactly.) (a) Find the p-value for F = 3.8,...
• A waitress believes the distribution of her tips has a model that is slightly skewed to...
• ***Environmental Engineering*** Well water in Sullivan County, Pennsylvania was sampled and found to contain 6,590µg/L of...
• A 25 mm diameter egg roll (k = 1 W/m degree Celsius) is roasted with the...