Question

For all natural numbers n ≥ 4, 2n ≤ n!. Proof. We have 24 = 16...

For all natural numbers n ≥ 4, 2n ≤ n!.
Proof. We have 24 = 16 and 4! = 24, so the statement is true for n = 4. Assume that 2n < n! for some n. Then

2n+1 =2(2n)<2(n!)≤(n+1)(n!)=(n+1)!
so 2n+1 < (n + 1)!. Thus, by the PMI, the statement is true for all n ≥ 4.

This proof is incorrect. How do you prove it the correct way? The formula of the proof was said to be incorrect but I still don't understand.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in...
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in detail trying to learn.
Using the method of induction proof, prove: If m and n are natural numbers, then so...
Using the method of induction proof, prove: If m and n are natural numbers, then so are n + m and nm.
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers
Find all natural numbers n so that    n3 + (n + 1)3 > (n +...
Find all natural numbers n so that    n3 + (n + 1)3 > (n + 2)3. Prove your result using induction.
Exercise 6.6. Let the inductive set be equal to all natural numbers, N. Prove the following...
Exercise 6.6. Let the inductive set be equal to all natural numbers, N. Prove the following propositions. (a) ∀n, 2n ≥ 1 + n. (b) ∀n, 4n − 1 is divisible by 3. (c) ∀n, 3n ≥ 1 + 2 n. (d) ∀n, 21 + 2 2 + ⋯ + 2 n = 2 n+1 − 2.
If we let N stand for the set of all natural numbers, then we write 6N...
If we let N stand for the set of all natural numbers, then we write 6N for the set of natural numbers all multiplied by 6 (so 6N = {6, 12, 18, 24, . . . }). Show that the sets N and 6N have the same cardinality by describing an explicit one-to-one correspondence between the two sets.
Consider the following recursive equation s(2n) = 2s(n) + 3; where n = 1, 2, 4,...
Consider the following recursive equation s(2n) = 2s(n) + 3; where n = 1, 2, 4, 8, 16, ... s(1) = 1 a. Calculate recursively s(8) b. Find an explicit formula for s(n) c. Use the formula of part b to calculate s(1), s(2), s(4), and s(8) d Use the formula of part b to prove the recurrence equation s(2n) = 2s(n) + 3
We are given a sequence of numbers: 1, 3, 5, 7, 9, . . . and...
We are given a sequence of numbers: 1, 3, 5, 7, 9, . . . and want to prove that the closed formula for the sequence is an = 2n – 1.          What would the next number in the sequence be? What is the recursive formula for the sequence? Is the closed formula true for a1? What about a2? What about a3? Critical Thinking How many values would we have to check before we could be sure that the...
Research the hexagonal numbers whose explicit formula is given by Hn=n(2n-1) Use colored chips or colored...
Research the hexagonal numbers whose explicit formula is given by Hn=n(2n-1) Use colored chips or colored tiles to visually prove the following for .(n=5) [a] The nth hexagonal number is equal to the nth square number plus twice the (n-1) ^th triangular number. Also provide an algebraic proof of this theorem for full credit [b] The nth hexagonal number is equal to the (2n-1)^th triangular number. Also provide an algebraic proof of this theorem for full credit. Please use (...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT