Question

Define a relation R on the set Natural Numbers given by aRb if and only if...

Define a relation R on the set Natural Numbers given by aRb if and only if a + b is even.

a). Write a careful proof to show that R is an equivalence relation.

b). Describe the elements in the equivalence class of [3].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For natural numbers x and y, define xRy if and only if x^2 + y is...
For natural numbers x and y, define xRy if and only if x^2 + y is even. Prove that R is an equivalence relation on the set of natural numbers and find the quotient set determined by R. What would the quotient set be? can this proof be explained in detail?
Define a relation R on Z by aRb if and only if |a| = |b|. a)...
Define a relation R on Z by aRb if and only if |a| = |b|. a) Prove R is an equivalence relation b) Compute [0] and [n] for n in Z with n different than 0.
Using Discrete Math Let ρ be the relation on the set of natural numbers N given...
Using Discrete Math Let ρ be the relation on the set of natural numbers N given by: for all x, y ∈ N, xρy if and only if x + y is even. Show that ρ is an equivalence relation and determine the equivalence classes.
Define a relation on Z as aRb if 3 | (2a − 5b). Is R an...
Define a relation on Z as aRb if 3 | (2a − 5b). Is R an equivalence relation? Justify your answer.
Define a relation ? over the set of nonzero rational numbers as ??? if and only...
Define a relation ? over the set of nonzero rational numbers as ??? if and only if ??>0. Is R an equivalence relation?
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Show that the equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq. you may use the following lemma: If p is prime...
A relation R is defined on Z by aRb if 7x − 5y is even. Show...
A relation R is defined on Z by aRb if 7x − 5y is even. Show that R is an equivalence relation.
A relation R is called atransitive if aRb and bRc implies cRa. Show that R is...
A relation R is called atransitive if aRb and bRc implies cRa. Show that R is reflexive and atransitive if and only if R is an equivalence relation.
(Please Show all work)A relation R is defined on Z by aRb if 7x−5y is even....
(Please Show all work)A relation R is defined on Z by aRb if 7x−5y is even. Show that R is an equivalence relation.
Given a preorder R on a set A, prove that there is an equivalence relation S...
Given a preorder R on a set A, prove that there is an equivalence relation S on A and a partial ordering ≤ on A/S such that [a] S ≤ [b] S ⇐⇒ aRb.