Question

Prove that it holds for Heron's sequence that xN2 --->2. hint: use 2xn(xn+1 - xn) =...

Prove that it holds for Heron's sequence that xN2 --->2.

hint: use 2xn(xn+1 - xn) = 2 - xN2

Homework Answers

Answer #1

Ans:)

Other form of Heron's sequence can be derived as follows (from the hint):

First we need to prove that the sequence is convergent.

Using AM,GM inequality we can see the following:

Now, divide the heron's sequence derived by x_n,

      

On performing ratio test we get,

(Since , when n tends to infinity)

Suppose that as n tends to infinity, the sequence tends to some limiting value l such that

The equation becomes,

Thus

Hence proved.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the definition of a Cauchy sequence to prove that the sequence defined by xn =...
Use the definition of a Cauchy sequence to prove that the sequence defined by xn = (3/2)^n is a Cauchy sequence in R.
Define a sequence (xn)n≥1 recursively by x1 = 1, x2 = 2, and xn = ((xn−1)+(xn−2))/...
Define a sequence (xn)n≥1 recursively by x1 = 1, x2 = 2, and xn = ((xn−1)+(xn−2))/ 2 for n > 2. Prove that limn→∞ xn = x exists and find its value.
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that...
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that lim n→∞ (x1 + x2 + · · · + xn)/ n = 0 .
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove...
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove that (xn) is bounded. That is, show that there exists C > 0 such that |xn| less than or equal to C for all n in N.
For Xn given by the following, prove the convergence or divergence of the sequence (Xn) with...
For Xn given by the following, prove the convergence or divergence of the sequence (Xn) with a formal proof, clearly and neatly: a) Xn = n2/(2n2+1) b) Xn = (-1)n/(n+1) c) Xn = sin(n)/(n2+1)
If Xn is a cauchy sequence and Yn is also a cauchy sequence, then prove that...
If Xn is a cauchy sequence and Yn is also a cauchy sequence, then prove that Xn+Yn is also a cauchy sequence
Consider a sequence defined recursively as X0= 1,X1= 3, and Xn=Xn-1+ 3Xn-2 for n ≥ 2....
Consider a sequence defined recursively as X0= 1,X1= 3, and Xn=Xn-1+ 3Xn-2 for n ≥ 2. Prove that Xn=O(2.4^n) and Xn = Ω(2.3^n). Hint:First, prove by induction that 1/2*(2.3^n) ≤ Xn ≤ 2.8^n for all n ≥ 0 Find claim, base case and inductive step. Please show step and explain all work and details
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as...
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as n approaches infinity. if and only if the limit of (xN) exists and xn approaches 0.
) Let α be a fixed positive real number, α > 0. For a sequence {xn},...
) Let α be a fixed positive real number, α > 0. For a sequence {xn}, let x1 > √ α, and define x2, x3, x4, · · · by the following recurrence relation xn+1 = 1 2 xn + α xn (a) Prove that {xn} decreases monotonically (in other words, xn+1 − xn ≤ 0 for all n). (b) Prove that {xn} is bounded from below. (Hint: use proof by induction to show xn > √ α for all...
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT