Question

let SN(x) = a0 + sum from 1 to N of (an cosnx + bn sin...

let SN(x) = a0 + sum from 1 to N of (an cosnx + bn sin nx) be the Nth partial sum of a Fourier series where a0, an and bn are constants and N is a positive integer

Show that 1/pi [ integral from -pi to pi of |(SN (x)|^2 dx ] = 2a0^2 + sum from 1 to N of (an2 + bn2 )

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that the family of trigonometric functions { 1, cos x, sin x, ..., cos nx,...
Prove that the family of trigonometric functions { 1, cos x, sin x, ..., cos nx, sin nx, ...} form an orthogonal system on [-pi,pi] prove that the following orthogonality relations hold integral from -pi to pi of sin nx dx = 0 and integral from -pi to pi of cos nx dx = 0
Let h be the function defined by H(x)= integral pi/4 to x (sin^2(t))dt. Which of the...
Let h be the function defined by H(x)= integral pi/4 to x (sin^2(t))dt. Which of the following is an equation for the line tangent to the graph of h at the point where x= pi/4. The function is given by H(x)= integral 1.1 to x (2+ 2ln( ln(t) ) - ( ln(t) )^2)dt for (1.1 < or = x < or = 7). On what intervals, if any, is h increasing? What is a left Riemann sum approximation of integral...
Consider the following series. ∞ 1 n4 n = 1 (a) Use the sum of the...
Consider the following series. ∞ 1 n4 n = 1 (a) Use the sum of the first 10 terms to estimate the sum of the given series. (Round the answer to six decimal places.) s10 = 0.082036 Incorrect: Your answer is incorrect. (b) Improve this estimate using the following inequalities with n = 10. (Round your answers to six decimal places.) sn + ∞ f(x) dx n + 1 ≤ s ≤ sn + ∞ f(x) dx n ≤ s...
6. Let series {an} = 1/(n2 + 1) and series {bn} = 1/n2. Use Limit Comparison...
6. Let series {an} = 1/(n2 + 1) and series {bn} = 1/n2. Use Limit Comparison Test to determine if each series is convergent or divergent. 7. Use Ratio Test to determine if series {an}= (n + 2)/(2n + 7) where n is in interval [0, ∞] is convergent or divergent. Note: if the test is inconclusive, use n-th Term Test to answer the question. 8. Use Root Test to determine if series {an} = nn/3(1 + 2n) where n...
find the sum of the series sigma n=0 to infinity {2 [3^(n/2 -2) / 7^(n+1)] +...
find the sum of the series sigma n=0 to infinity {2 [3^(n/2 -2) / 7^(n+1)] + sin ( (n+1)pi / 2n+1) - sin (n pi / 2n-1)}
Prove that for positive​ integers, Integral from nothing to nothing tangent Superscript n Baseline x dx...
Prove that for positive​ integers, Integral from nothing to nothing tangent Superscript n Baseline x dx equals StartFraction tangent Superscript n minus 1 Baseline x Over n minus 1 EndFraction minus Integral from nothing to nothing tangent Superscript n minus 2 Baseline x dx comma n not equals 1∫tannx dx=tann−1xn−1−∫tann−2x dx, n≠1. Use the formula to evaluate Integral from 0 to StartFraction pi Over 3 EndFraction 4 tangent Superscript 5 Baseline x dx∫0π34tan5x dx.
1a) Evaluate the limit as x goes to infinity using l'hopitals rule (x^-1/3)/sin(1/x) 1b) Evaluate the...
1a) Evaluate the limit as x goes to infinity using l'hopitals rule (x^-1/3)/sin(1/x) 1b) Evaluate the improper integral (if convergent find it's value) (secx-tanx)dx where a= 0 and b=pi/2
(1 point) Let F(x)=∫o,x sin(6t^2) dt F(x)=∫0xsin⁡(6t^2) dt. The integrals go from 0 to x Find...
(1 point) Let F(x)=∫o,x sin(6t^2) dt F(x)=∫0xsin⁡(6t^2) dt. The integrals go from 0 to x Find the MacLaurin polynomial of degree 7 for F(x)F(x). Use this polynomial to estimate the value of ∫0, .790 sin(6x^2) dx ∫0, 0.79 sin⁡(6x^2) dx. the integral go from 0 to .790
Show that the series sum(an) from n=1 to infinity where each an >= 0 converges if...
Show that the series sum(an) from n=1 to infinity where each an >= 0 converges if and only if for every epsilon>0 there is an integer N such that | sum(ak ) from k=N to infinity | < epsilon
(a) Find the Riemann sum for f(x) = 3 sin(x), 0 ≤ x ≤ 3π/2, with...
(a) Find the Riemann sum for f(x) = 3 sin(x), 0 ≤ x ≤ 3π/2, with six terms, taking the sample points to be right endpoints. (Round your answers to six decimal places.) R6 = (b) Repeat part (a) with midpoints as the sample points. M6 = Express the limit as a definite integral on the given interval. lim n → ∞ n 7xi* + (xi*)2 Δx, [3, 8] i = 1 8 dx 3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT