Question

Find a set of equivalence class representatives other than the set of Rn ’ s. Explain...

Find a set of equivalence class representatives other than the set of Rn ’ s. Explain your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose R is an equivalence relation on a finite set A, and every equivalence class has...
Suppose R is an equivalence relation on a finite set A, and every equivalence class has the same cardinality m. Express |R| in terms of m and |A|. Explain why the answer is m|A|
Consider the definition of equivalence class. Let A be the set {0,1,2,3,4}. Is it possible to...
Consider the definition of equivalence class. Let A be the set {0,1,2,3,4}. Is it possible to have an equivalence relation on A with the equivalence classes: {0,1,2} and {2,3,4}? Explain. (Hint: Think about the element 2)
Discrete Math Course 3. Decide and explain whether or not S is an equivalence relation on...
Discrete Math Course 3. Decide and explain whether or not S is an equivalence relation on Z , if ??? ??? 3 ??????? ?+2? 4. Find the transitive closure of the relation ?={(?,?),(?,?),(?,?),(?,?),(?,?)} on the set ?={?,?,?,?,?}. Draw a directed graph of ? (not its closure). 5. Decide and explain whether or not the set ?={?/4∶?∈?} is a countable
Let S be a nonempty set in Rn, and its support function be σS = sup{...
Let S be a nonempty set in Rn, and its support function be σS = sup{ <x,z> : z ∈ S}. let conv(S) denote the convex hull of S. Show that σS (x)= σconv(S) (x), for all x ∈ Rn
What is the number of elements of the largest equivalence class that is subset of that...
What is the number of elements of the largest equivalence class that is subset of that list? Briefly explain how you know your answer is correct.
What is the number of elements of the largest equivalence class that is a subset of...
What is the number of elements of the largest equivalence class that is a subset of that list? Briefly explain how you know your answer is correct.
Let S be a finite set and let P(S) denote the set of all subsets of...
Let S be a finite set and let P(S) denote the set of all subsets of S. Define a relation on P(S) by declaring that two subsets A and B are related if A and B have the same number of elements. (a) Prove that this is an equivalence relation. b) Determine the equivalence classes. c) Determine the number of elements in each equivalence class.
Given a preorder R on a set A, prove that there is an equivalence relation S...
Given a preorder R on a set A, prove that there is an equivalence relation S on A and a partial ordering ≤ on A/S such that [a] S ≤ [b] S ⇐⇒ aRb.
Recall from class that we defined the set of integers by defining the equivalence relation ∼...
Recall from class that we defined the set of integers by defining the equivalence relation ∼ on N × N by (a, b) ∼ (c, d) =⇒ a + d = c + b, and then took the integers to be equivalence classes for this relation, i.e. Z = [(a, b)]∼ | (a, b) ∈ N × N . We then proceeded to define 0Z = [(0, 0)]∼, 1Z = [(1, 0)]∼, − [(a, b)]∼ = [(b, a)]∼, [(a, b)]∼...
Suppose that a student in this class uses their personalized class data set to find the...
Suppose that a student in this class uses their personalized class data set to find the following confidence interval for the proportion of students in this class who travel more than 5 km to school: (.171, .243). Consider the following statements. (i) If that same student used the same data set to produce the following confidence interval for the proportion of students who travel more than 5km to school, (.184, .230), then this new confidence interval must have a higher...