Question

4. Let A = {0, 1, 2, 3, 4, 5, 6} and define a relation R...

4. Let A = {0, 1, 2, 3, 4, 5, 6} and define a relation R on A as follows: R = {(a, a) | a ∈ A} ∪ {(0, 1),(0, 2),(1, 3),(2, 3),(2, 4),(2, 5),(3, 4),(4, 5),(4, 6)} Is R a partial ordering on A? Prove or disprove.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A = {−5, −4, −3, −2, −1, 0, 1, 2, 3} and define a relation...
Let A = {−5, −4, −3, −2, −1, 0, 1, 2, 3} and define a relation R on A as follows: For all (m, n) is in A, m R n ⇔ 5|(m2 − n2). It is a fact that R is an equivalence relation on A. Use set-roster notation to list the distinct equivalence classes of R. (Enter your answer as a comma-separated list of sets.) ____________
2. Define a relation R on pairs of real numbers as follows: (a, b)R(c, d) iff...
2. Define a relation R on pairs of real numbers as follows: (a, b)R(c, d) iff either a < c or both a = c and b ≤ d. Is R a partial order? Why or why not? If R is a partial order, draw a diagram of some of its elements. 3. Define a relation R on integers as follows: mRn iff m + n is even. Is R a partial order? Why or why not? If R is...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
let A = {−4, 4, 5, 8} and B = {4, 5, 6} and define relations...
let A = {−4, 4, 5, 8} and B = {4, 5, 6} and define relations R and S from A to B as follows: For all elements (x in A , y in B) , x R y ⇔ |x| = |y| + 1 and x S y ⇔ x /y is an integer. 1. Find A X B and A intersect B. 2. Is the relation R reflexive ? Justify your answer.
5. Prove or disprove the following statements: (a) Let R be a relation on the set...
5. Prove or disprove the following statements: (a) Let R be a relation on the set Z of integers such that xRy if and only if xy ≥ 1. Then, R is irreflexive. (b) Let R be a relation on the set Z of integers such that xRy if and only if x = y + 1 or x = y − 1. Then, R is irreflexive. (c) Let R and S be reflexive relations on a set A. Then,...
Let A = {1, 2, 3, 4, 5}. Describe an equivalence relation R on the set...
Let A = {1, 2, 3, 4, 5}. Describe an equivalence relation R on the set A that produces the following partition (has the sets of the partition as its equivalence classes): A1 = {1, 4}, A2 = {2, 5}, A3 = {3} You are free to describe R as a set, as a directed graph, or as a zero-one matrix.
a) Let R be an equivalence relation defined on some set A. Prove using induction that...
a) Let R be an equivalence relation defined on some set A. Prove using induction that R^n is also an equivalence relation. Note: In order to prove transitivity, you may use the fact that R is transitive if and only if R^n⊆R for ever positive integer ​n b) Prove or disprove that a partial order cannot have a cycle.
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
Let A = {1,2,3,4,5,6,7,8,9,10} define the equivalence relation R on A as follows : For all...
Let A = {1,2,3,4,5,6,7,8,9,10} define the equivalence relation R on A as follows : For all x,y A, xRy <=> 3|(x-y) . Find the distinct equivalence classes of R(discrete math)
Let p = (8, 10, 3, 11, 4, 0, 5, 1, 6, 2, 7, 9) and...
Let p = (8, 10, 3, 11, 4, 0, 5, 1, 6, 2, 7, 9) and let q = (2, 4, 9, 5, 10, 6, 11, 7, 0, 8, 1, 3) be tone rows. Verify that p = Tk(R(I(q))) for some k, and find this value of k.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT