Question

Let (an)∞n=1 be a monotone sequence. Let (ank )∞k=1 be a subsequence of (an). Prove that...

Let (an)n=1 be a monotone sequence. Let (ank )k=1 be a subsequence of (an). Prove that (an) converges iff (ank) converges. Also, prove that if the two sequences converge, their limits are the same.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that sequence {sn} converges if it is monotone and has a convergent subsequence.
Show that sequence {sn} converges if it is monotone and has a convergent subsequence.
1) if a sequence is monotone decreasing and greater than 0 for all values of n...
1) if a sequence is monotone decreasing and greater than 0 for all values of n (n=1 to infinity) then the sequence must converge. True or false? 2) In order for infinite series k=1 to infinity (ak + bk) = series ak + series bk, both series must converge. True or false? 3) Let f(x) be a continuous decreasing function where f(k) = ak. If integral 1 to infinity f(x) = 5, what can we conclude about series ak? -series...
Prove that if a sequence converges to a limit x then very subsequence converges to x.
Prove that if a sequence converges to a limit x then very subsequence converges to x.
Prove: If x is a sequence of real numbers that converges to L, then any subsequence...
Prove: If x is a sequence of real numbers that converges to L, then any subsequence of x converges to L.
1.- Prove the following: a.- Apply the definition of convergent sequence, Ratio Test or Squeeze Theorem...
1.- Prove the following: a.- Apply the definition of convergent sequence, Ratio Test or Squeeze Theorem to prove that a given sequence converges. b.- Use the Divergence Criterion for Sub-sequences to prove that a given sequence does not converge. Subject: Real Analysis
Use the Monotone Convergence Theorem to show that each sequence converges. a)an= -(2/3)^n b)an= 1+ 1/n...
Use the Monotone Convergence Theorem to show that each sequence converges. a)an= -(2/3)^n b)an= 1+ 1/n c) 2/(-n)^2
A subsequence is anything obtained from a sequence by extracting a subset of elements, but keeping...
A subsequence is anything obtained from a sequence by extracting a subset of elements, but keeping them in the same order; the elements of the subsequence need not be contiguous in the original sequence. Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common subsequence of A and B is another sequence that is a subsequence of both A and B. Describe an efficient algorithm to compute the length of the longest common subsequence of A...
Exercise 1. Suppose (a_n) is a sequence and f : N --> N is a bijection....
Exercise 1. Suppose (a_n) is a sequence and f : N --> N is a bijection. Let (b_n) be the sequence where b_n = a_f(n) for all n contained in N. Prove that if a_n converges to L, then b_n also converges to L.
prove that a sequence converges if and only if all subsequences converge to the same limit
prove that a sequence converges if and only if all subsequences converge to the same limit
Prove that the sequence cos(nπ/3) does not converge. let epsilon>0 find a N so that |An|...
Prove that the sequence cos(nπ/3) does not converge. let epsilon>0 find a N so that |An| < epsilon for n>N