Question

Let phi: G1 -> G2 be a surjective group homomorphism. Let H1 be a normal subgroup...

Let phi: G1 -> G2 be a surjective group homomorphism. Let H1 be a normal subgroup of G1 and suppose that phi(H1) = H2. Disprove that G1/H1 G2/H2. Hint: find a counterexample where phi is not injective.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let N1 be a normal subgroup of group G1, and N2 be a normal subgroup of...
Let N1 be a normal subgroup of group G1, and N2 be a normal subgroup of group G2. Use the Fundamental Homomorphism Theorem to show that G1/N1 × G2/N2 ≃ (G1 × G2)/(N1 × N2).
Let G1 and G2 be isomorphic groups. Prove that if G1 has a subgroup of order...
Let G1 and G2 be isomorphic groups. Prove that if G1 has a subgroup of order n, then G2 has a subgroup of order n
Let G be a finite group, and suppose that H is normal subgroup of G. Show...
Let G be a finite group, and suppose that H is normal subgroup of G. Show that, for every g ∈ G, the order of gH in G/H must divide the order of g in G. What is the order of the coset [4]42 + 〈[6]42〉 in Z42/〈[6]42〉? Find an example to show that the order of gH in G/H does not always determine the order of g in G. That is, find an example of a group G, and...
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup...
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup of G then phi(N) is a normal subgroup of H. Prove it is a subgroup and prove it is normal?
Let C be a normal subgroup of the group A and let D be a normal...
Let C be a normal subgroup of the group A and let D be a normal subgroup of the group B. (a) Prove that C × D is a normal subgroup of A × B (b) Prove that the map φ : A × B → (A/C) × (B/D) given by φ((m, n)) = (mC, nD) is a group homomorphism. (c) Use the fundamental homomorphism theorem to prove that (A × B)/(C × D) ∼= (A/C) × (B/D)
Let G and H be groups and f:G--->H be a surjective homomorphism. Let J be a...
Let G and H be groups and f:G--->H be a surjective homomorphism. Let J be a subgroup of H and define f^-1(J) ={x is an element of G| f(x) is an element of J} a. Show ker(f)⊂f^-1(J) and ker(f) is a normal subgroup of f^-1(J) b. Let p: f^-1(J) --> J be defined by p(x) = f(x). Show p is a surjective homomorphism c. Show the set kef(f) and ker(p) are equal d. Show J is isomorphic to f^-1(J)/ker(f)
For an abelian group G, let tG = {x E G: x has finite order} denote...
For an abelian group G, let tG = {x E G: x has finite order} denote its torsion subgroup. Show that t defines a functor Ab -> Ab if one defines t(f) = f|tG (f restricted on tG) for every homomorphism f. If f is injective, then t(f) is injective. Give an example of a surjective homomorphism f for which t(f) is not surjective.
Let φ : A → B be a group homomorphism. Prove that ker φ is a...
Let φ : A → B be a group homomorphism. Prove that ker φ is a normal subgroup of A.
Suppose G and H are groups and ϕ:G -> H is a homomorphism. Let N be...
Suppose G and H are groups and ϕ:G -> H is a homomorphism. Let N be a normal subgroup of G contained in ker(ϕ). Define a mapping ψ: G/N -> H by ψ (aN)= ϕ (a) for all a in G. Prove that ψ is a well-defined homomorphism from G/N to H. Is ψ always an isomorphism? Prove it or give a counterexample
Find the group homomorphism from Z_14 to A_4, where A4 is the alternating subgroup of S4....
Find the group homomorphism from Z_14 to A_4, where A4 is the alternating subgroup of S4. List the elements of A_4