Question

P.V=n.R.T this is the equation used for ideal gases.This equation gives the state of real gases...

P.V=n.R.T this is the equation used for ideal gases.This equation gives the state of real gases approx.

The more accurate equation for real gases is by van der Waals ( P+a/v2).(v-b)=R.T

v=V/n=molar volume,R=0.08207 lt.atm/mol.K ideal gaz constant,a=3.592,b=0.04267,T=320 K,P=2.2 atm

write a program that finds the volume of v (molar volume) of 1 mol of carbon monoxide gas in a container at T = 320 K temperature and P = 2.2 atm pressure and compares the ideal gas equation with p.v = n.r.t

using Newton-Raphson Method could you solve analytical solution please ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two deviations of real gases from ideal gases which are treated in the van der Waals...
Two deviations of real gases from ideal gases which are treated in the van der Waals equation are finite molecular volume and non-zero molecular attractions. True False
Use the van der Waals equation and the ideal gas equation to calculate the pressure for...
Use the van der Waals equation and the ideal gas equation to calculate the pressure for 2.00 mol He gas in a 1.00 L container at 300.0 K. 1st attempt Part 1 (5 points) Ideal gas law pressure_____ atm Part 2 (5 points) Van der Waals pressure_____ atm
Use the van der Waals equation of state to calculate the pressure of 2.90 mol of...
Use the van der Waals equation of state to calculate the pressure of 2.90 mol of CH4 at 457 K in a 4.50 L vessel. Van der Waals constants can be found here. P= ________ atm Use the ideal gas equation to calculate the pressure under the same conditions. P= ______ atm
At high pressures, real gases do not behave ideally. Calculate the pressure exerted by 39.5 g...
At high pressures, real gases do not behave ideally. Calculate the pressure exerted by 39.5 g H2 at 20.0°C in a 1.00 L container assuming in Part 1 non-ideal behavior and in Part 2 ideal behavior. 7th attempt Part 1 Use the van der Waals equation and data in the hint to calculate the pressure exerted. 862 atm Part 2 Now, calculate the pressue excerted assuming that the gas behaves as an ideal gas.
What is the molar volume of n-hexane at 660K and 91 bar according to (a) the...
What is the molar volume of n-hexane at 660K and 91 bar according to (a) the ideal gas law and (b) the van der Waals equation? For the latter, first use the equations at the end of the CHE346 class notes on van der Waals gases to determine values of the constants a and b in the van der Waals equation from the critical constants for n-hexane, Tc = 507.7 K and Pc = 30.3 bar.
According to the ideal gas law, a 10.08 mol sample of krypton gas in a 0.8488...
According to the ideal gas law, a 10.08 mol sample of krypton gas in a 0.8488 L container at 496.7 K should exert a pressure of 484.0 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Kr gas, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol. ----------------% Hint: % difference = 100 × (P ideal - Pvan der Waals) / P ideal
According to the ideal gas law, a 10.59 mol sample of argon gas in a 0.8229...
According to the ideal gas law, a 10.59 mol sample of argon gas in a 0.8229 L container at 495.4 K should exert a pressure of 523.2 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Ar gas, a = 1.345 L2atm/mol2 and b = 3.219×10-2 L/mol. ??? % Hint: % difference = 100 × (P ideal - Pvan der Waals) / P ideal
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted...
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted by 1.00 mole of Argon at a volume of 1.31 L at 426 K. The van der Waals parameters a and b for Argon are 1.355 bar*dm6*mol-2 and 0.0320 dm3*mol-1, respectively. Is the attractive or repulsive portion of the potential dominant under these conditions?
At high pressures, real gases do not behave ideally. Calculate the pressure exerted by 29.0 g...
At high pressures, real gases do not behave ideally. Calculate the pressure exerted by 29.0 g H2 at 20.0°C in a 1.00 L container. Use the van der Waals equation and data in the hint to calculate the pressure exerted. Now, calculate the pressure exerted, assuming that the gas behaves as an ideal gas.
The van der Waals equation of state is (P + a(n/V )^2)(V/n − b) = RT,...
The van der Waals equation of state is (P + a(n/V )^2)(V/n − b) = RT, where a and b are gas-specific constants. For Hydrogen gas, a = 2.45 × 10^-2P a · m^6 and b = 26.61 × 10^-6m^3/mol, while for an ideal gas a = b = 0. (a) Consider trying to measure the ideal gas constant in a lab from the relation R = P V/(nT), where P, V, n, and T are all measured parameters. However,...