Question

The differential equation given as dy / dx = y(x^3) - 1.4y, y (0) = 1...

The differential equation given as dy / dx = y(x^3) - 1.4y, y (0) = 1 is calculated by taking the current h = 0.2 at the point x = 0.6 and calculated by the Runge-Kutta method from the 4th degree, find the relative error.
analytical solution: y(x)=e^(0.25(x^4)-1.4x)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given (dy/dx)=(3x^3+6xy^2-x)/(2y) with y=0.707 at x= 0, h=0.1 obtain a solution by the fourth order Runge-Kutta...
Given (dy/dx)=(3x^3+6xy^2-x)/(2y) with y=0.707 at x= 0, h=0.1 obtain a solution by the fourth order Runge-Kutta method for a range x=0 to 0.5
Solve the given differential equation y-x(dy/dx)=3-2x2(dy/dx)
Solve the given differential equation y-x(dy/dx)=3-2x2(dy/dx)
Consider the differential equation x2 dy + y ( x + y) dx = 0 with...
Consider the differential equation x2 dy + y ( x + y) dx = 0 with the initial condition y(1) = 1. (2a) Determine the type of the differential equation. Explain why? (2b) Find the particular solution of the initial value problem.
(x-y)dx + (y+x)dy =0 Solve the differential equation
(x-y)dx + (y+x)dy =0 Solve the differential equation
Find the general solution of the given differential equation (x+!) dy/dx + (x+2)y = 2xe^-x y...
Find the general solution of the given differential equation (x+!) dy/dx + (x+2)y = 2xe^-x y = ______ Determine whether there are any transient terms in the general solution.
Determine the numerical solution of the differential equation y'+y-x=0 using the Euler and the Runge-Kutta method...
Determine the numerical solution of the differential equation y'+y-x=0 using the Euler and the Runge-Kutta method until n = 5. The step size is 0.2, y(0) = 1. No need to show calculations, I just need the summary of results of both methods with their percent absolute error from the exact value per yn. Abs. error will be (Exact-Approx)/Exact * 100
3. Consider the differential equation: x dy/dx = y^2 − y (a) Find all solutions to...
3. Consider the differential equation: x dy/dx = y^2 − y (a) Find all solutions to the differential equation. (b) Find the solution that contains the point (−1,1) (c) Find the solution that contains the point (−2,0) (d) Find the solution that contains the point (1/2,1/2) (e) Find the solution that contains the point (2,1/4)
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x...
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x − y 2) Solve the given differential equation by separation of variables. y ln(x) dx/dy = (y+1/x)^2 3) Find an explicit solution of the given initial-value problem. dx/dt = 7(x2 + 1),  x( π/4)= 1
exact differential equation, (2xy+x)dx+(x^2+y)dy=0
exact differential equation, (2xy+x)dx+(x^2+y)dy=0
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0...
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0 (a) A one-parameter family of solution of the equation is y(x) = (b) The particular solution of the equation subject to the initial condition y(1) =1/7.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT