Question

Graph 1 + 3x^2 - 2x^3. List the coordinates of the relative maximum, relative minimum, and...

Graph 1 + 3x^2 - 2x^3. List the coordinates of the relative maximum, relative minimum, and the point of inflection. State the intervals where the function is increasing, decreasing, concave up and concave down.

Please make the answer legible, thank you :)

Homework Answers

Answer #1

Hamdwritten solution:-

Thank you.............

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. Given the function y = f(x) = 2x^3 + 3x^2 – 12x + 2 a....
4. Given the function y = f(x) = 2x^3 + 3x^2 – 12x + 2 a. Find the intervals where f is increasing/f is decreasing b. Find the intervals where f is concave up/f is concave down c. Find all relative max and relative min (state which is which and why) d. Find all inflection points (also state why)
For the function ?(?) = ?^3 + 3x^2 + 1 determine All intervals where the graph...
For the function ?(?) = ?^3 + 3x^2 + 1 determine All intervals where the graph is concave up All intervals where the graph is concave down The coordinates of any points of inflection
Let f(x) = 3x^5/5 −2x^4+1 Find the following -Interval of increasing -Interval of decreasing -Local maximum(s)...
Let f(x) = 3x^5/5 −2x^4+1 Find the following -Interval of increasing -Interval of decreasing -Local maximum(s) at x = -Local minimum(s) at x = -Interval of concave up -Interval of concave down -Inflection point(s) at x =
Let f(x) = 3x^5/5 −2x^4+1 Find the following -Interval of increasing -Interval of decreasing -Local maximum(s)...
Let f(x) = 3x^5/5 −2x^4+1 Find the following -Interval of increasing -Interval of decreasing -Local maximum(s) at x = -Local minimum(s) at x = -Interval of concave up -Interval of concave down -Inflection point(s) at x =
given function f(x)=-x^3+5x^2-3x+2 A) Determine the intervals where F(x) Is increasing and decreasing b) use your...
given function f(x)=-x^3+5x^2-3x+2 A) Determine the intervals where F(x) Is increasing and decreasing b) use your answer from a to determine any relative maxima or minima of the function c) Find that intervals where f(x) is concave up and concave down and any points of inflection
Let f (x) = 3x^4 −4x^3 −12x^2 + 1, defined on R. (a) Find the intervals...
Let f (x) = 3x^4 −4x^3 −12x^2 + 1, defined on R. (a) Find the intervals where f is increasing, and decreasing. (b) Find the intervals where f is concave up, and concave down. (c) Find the local maxima, the local minima, and the points of inflection. (d) Find the Maximum and Minimum Absolute of f over [−2.3]
1) Use the First Derivative Test to find the local maximum and minimum values of the...
1) Use the First Derivative Test to find the local maximum and minimum values of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.): g(u) = 0.3u3 + 1.8u2 + 146 a) local minimum values:    b) local maximum values:    2) Consider the following: f(x) = x4 − 32x2 + 6 (a) Find the intervals on which f is increasing or decreasing. (Enter your answers using interval notation.) increasing:    decreasing:...
Find the intervals where the function ?(?) = ? 3 + 15? 2 − 72? −...
Find the intervals where the function ?(?) = ? 3 + 15? 2 − 72? − 610 is increasing, decreasing and the value(s) where it has extrema. Give the intervals where in its concave up, concave down, and inflection point. Use this information to sketch a graph of the function.
. Let f(x) = 3x^5/5 −2x^4+1. Find the following: (a) Interval of increasing: (b) Interval of...
. Let f(x) = 3x^5/5 −2x^4+1. Find the following: (a) Interval of increasing: (b) Interval of decreasing: (c) Local maximum(s) at x = d) Local minimum(s) at x = (e) Interval of concave up: (f) Interval of concave down: (g) Inflection point(s) at x =
Analyze and plot the graph of f(x)= x^4/2 - 2x^3/3. for this, find; 1) domain of...
Analyze and plot the graph of f(x)= x^4/2 - 2x^3/3. for this, find; 1) domain of f: 2)Vertical asymptotes: 3) Horizontal asymptotes: 4) Intersection in y: 5) intersection in x: 6) Critical numbers 7) intervals where f is increasing: 8) Intervals where f is decreasing: 9) Relatives extremes Relatives minimums: Relatives maximums: 10) Inflection points: 11) Intervals where f is concave upwards: 12) intervals where f is concave down: 13) plot the graph of f on the plane:
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT