Question

A spring is stretched by 9 in by a mass weighing 18 lb. The mass is...

A spring is stretched by 9 in by a mass weighing 18 lb. The mass is attached to a dashpot mechanism that has a damping constant of 0.15 lb⋅s/ft and is acted on by an external force of 6cos⁡(8t) lb.Determine the steady state response of this system. Use 32 ft/s^2 as the acceleration due to gravity. Pay close attention to the units. Leave answer in terms of exact numbers(no decimals).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Differential Equations A spring is stretched 6in by a mass that weighs 8 lb. The mass...
Differential Equations A spring is stretched 6in by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a damping constant of 0.25 lb· s/ft and is acted on by an external force of 2cos(2t) lb. (a) Find position u(t) of the mass at time t (b) Determine the steady-state response of this system Assume that g = 32 ft/s2
A spring is attached 6 in by a mass that weighs 8 lb. The mass is...
A spring is attached 6 in by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a damping constant of 0.25 lb.s/ft and is acted on by an external force of 4cos(2t) lb. 1. Determine the steady state response of this system 2. If the given mass is replaced by a mass m, determine the value of m for which the amplitude of the steady state response is maximum. 3. Write down the...
A mass weighing 32 lb is attached to a spring hanging from the ceiling and comes...
A mass weighing 32 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At time t=0, an external force of F(t) = 3cos(2t) lb is applied to the system. If the spring constant is 10lb/ft and the damping constant is 4 lb-sec/ft, find the steady state solution for the system. Use g = 32 ft / sec^2
A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes...
A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At time t=​0, an external force of F(t) = 3cos(4t) lb is applied to the system. If the spring constant is 10 lb/ft and the damping constant is 3 lb-sec/ft, find the​ steady-state solution for the system. Use g=32 ft/sec^2
1-Consider the following. 36y'' − y = 0, y(−4) = 1,   y'(−4) = −1 Find the...
1-Consider the following. 36y'' − y = 0, y(−4) = 1,   y'(−4) = −1 Find the solution of the given initial value problem. y(t) = ? 2- Consider the vibrating system described by the initial value problem. (A computer algebra system is recommended.) u'' + u = 9 cos ωt, u(0) = 5, u'(0) = 4 3-A spring is stretched 6 in. by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a...
A mass weighing 4 pounds is attached to a spring whose constant is 2 lb/ft. The...
A mass weighing 4 pounds is attached to a spring whose constant is 2 lb/ft. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 12 ft/s. Determine the time at which the mass passes through the equilibrium position. (Use g = 32 ft/s2 for the acceleration due to gravity.) s Find the time after the mass...
A mass of 8 kg stretches a spring 16 cm. The mass is acted on by...
A mass of 8 kg stretches a spring 16 cm. The mass is acted on by an external force of 7sin⁡(t/4)N and moves in a medium that imparts a viscous force of 3 N when the speed of the mass is 6 cm/s.If the mass is set in motion from its equilibrium position with an initial velocity of 4 cm/s, determine the position u of the mass at any time t. Use 9.8 m/s^2 as the acceleration due to gravity....
A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward,...
A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting the spring a distance of 1 in, and then set in motion with a downward velocity of 2 ft/s, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period, amplitude, and phase of the motion
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s^2 for the acceleration due to...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration...