Question

Solve the BVP for the wave equation ∂^2u/∂t^2(x,t)=∂^2u/∂x^2(x,t),  0 < x < pi, t > 0 u(0,t)=0,...

Solve the BVP for the wave equation

∂^2u/∂t^2(x,t)=∂^2u/∂x^2(x,t),  0 < x < pi, t > 0

u(0,t)=0, u(pi,t)=0,  ? > 0, u(0,t)=0,  u(pi,t)=0,  t>0,

u(x,0)= sin(x)cos(x), ut(x,0)=sin(x), 0 < x < pi

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0)...
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0) = sin2x, 0<x<pi
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x...
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x for 0≤x≤ π. if you like, you can use/cite the solution of Fourier sine series of sin^2(x) on [0,pi] = 1/4-(1/4)cos(2x) please show all steps and work clearly so I can follow your logic and learn to solve similar ones myself.
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinxcosx, ut(x,0) = x(pi - x)
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sin2x - sin3x, ut(x,0) = 0
Solve the below boundary value equation 1. Ut=2uxx o<x<pi 0<t 2. u(0,t) = ux(pi,t) 0<t 3....
Solve the below boundary value equation 1. Ut=2uxx o<x<pi 0<t 2. u(0,t) = ux(pi,t) 0<t 3. u(x,0) = 1-2x 0<x<pi
Solve the non homogenous wave equation , Utt - c^2Uxx =1 , u(x,0) = sin (x)...
Solve the non homogenous wave equation , Utt - c^2Uxx =1 , u(x,0) = sin (x) , Ut(x,0) = 1+x (PDE)
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0)...
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x 2) U(x,0) = x^3 , Ut(x,0) =sinx (PDE)
Solve the wave equation on the whole line (no boundary conditions) with initial conditions: u(x,0) =...
Solve the wave equation on the whole line (no boundary conditions) with initial conditions: u(x,0) = 0, ut (x,0)=xe^(-x^2)
Solve the following inhomogeneous wave problem for a vibrating string of length 1 (0 ≤ x...
Solve the following inhomogeneous wave problem for a vibrating string of length 1 (0 ≤ x ≤ 1): ∂^2u/ ∂t^2 = 1/2 * ∂^2u/∂x^2 − x. The initial conditions are u(x, 0) = cos(πx/2) + 1/3x^3 & ∂u/∂t (x, 0) = 0 boundary conditions are ∂u/∂x(0, t) = 0  & u(1, t) = 1/3.
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < L,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < L, t > 0, u(0,t) = 0 = u(L,t), u(x,0) = x(L - x)2, ut(x,0) = 0
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT