Question

Find the equation of the tangent plane at the given point. (x^2)(y^2)+z−45=0 at x=2, y=3 z=?

Find the equation of the tangent plane at the given point.

(x^2)(y^2)+z−45=0 at x=2, y=3

z=?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the equation of the tangent plane (in terms of x, y and z) to the...
Find the equation of the tangent plane (in terms of x, y and z) to the surface given by x = u, y = v and z = uv at the point (3, 2, 6).
Find an equation of the tangent plane to z=32-3(x^2)-4(y^2) at the point (2,1,16)
Find an equation of the tangent plane to z=32-3(x^2)-4(y^2) at the point (2,1,16)
Find an equation of the tangent plane to the surface x y 2 + 3 x...
Find an equation of the tangent plane to the surface x y 2 + 3 x − z 2 = 4 at the point ( 2 , 1 , − 2 ) An equation of the tangent plane is
Find an equation of the tangent plane to the given surface at the specified point. z...
Find an equation of the tangent plane to the given surface at the specified point. z = 2(x − 1)2 + 4(y + 3)2 + 1,    (3, −1, 25) Answer as z=
Find an equation of the tangent plane to the given surface at the specified point. z...
Find an equation of the tangent plane to the given surface at the specified point. z = 2(x − 1)2 + 4(y + 3)2 + 9,    (2, −2, 15)
Find an equation of the tangent plane to the given surface at the specified point. z...
Find an equation of the tangent plane to the given surface at the specified point. z = 8x^2 + y^2 − 7y, (1, 3, −4)
Find the equation for the tangent plane to the surface z=(xy)/(y+x) at the point P(1,1,1/2).
Find the equation for the tangent plane to the surface z=(xy)/(y+x) at the point P(1,1,1/2).
Find an equation of the tangent plane to the given parametric surface at the specified point....
Find an equation of the tangent plane to the given parametric surface at the specified point. x = u + v, y = 6u^2, z = u − v; (2, 6, 0)
Find the equation of the tangent plane to the surface determined by x2y4+z−35=0 at x=3, y=4.
Find the equation of the tangent plane to the surface determined by x2y4+z−35=0 at x=3, y=4.
(a) Find an equation of the plane tangent to the surface xy ln x − y^2...
(a) Find an equation of the plane tangent to the surface xy ln x − y^2 + z^2 + 5 = 0 at the point (1, −3, 2) (b) Find the directional derivative of f(x, y, z) = xy ln x − y^2 + z^2 + 5 at the point (1, −3, 2) in the direction of the vector < 1, 0, −1 >. (Hint: Use the results of partial derivatives from part(a))
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT