Question

Let R be the relation of congruence mod4 on Z: aRb if a-b= 4k, for some...

Let R be the relation of congruence mod4 on Z: aRb if a-b= 4k, for some k E Z.

(b) What integers are in the equivalence class of 31?

(c) How many distinct equivalence classes are there? What are they?

Repeat the above for congruence mod 5.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be the relation on Z defined by: For any a, b ∈ Z ,...
Let R be the relation on Z defined by: For any a, b ∈ Z , aRb if and only if 4 | (a + 3b). (a) Prove that R is an equivalence relation. (b) Prove that for all integers a and b, aRb if and only if a ≡ b (mod 4)
Define a relation R on Z by aRb if and only if |a| = |b|. a)...
Define a relation R on Z by aRb if and only if |a| = |b|. a) Prove R is an equivalence relation b) Compute [0] and [n] for n in Z with n different than 0.
Let R be the relation on the integers given by (a, b) ∈ R ⇐⇒ a...
Let R be the relation on the integers given by (a, b) ∈ R ⇐⇒ a − b is even. 1. Show that R is an equivalence relation 2. List teh equivalence classes for the relation Can anyone help?
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z...
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z is the whole integers.) 1) Give two real numbers that are in the same equivalence class. 2) Give two real numbers that are not in the same equivalence class. 3) Prove that this relation is an equivalence relation.
Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z : (1) For every...
Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z : (1) For every a ∈ Z, a = a mod n. (2) If a = b mod n then b = a mod n. (3) If a = b mod n and b = c mod n, then a = c mod n
13. Let R be a relation on Z × Z be defined as (a, b) R...
13. Let R be a relation on Z × Z be defined as (a, b) R (c, d) if and only if a + d = b + c. a. Prove that R is an equivalence relation on Z × Z. b. Determine [(2, 3)].
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How...
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How many equivalence classes does it have? 9f) fix n ∈ ℕ. Prove that if a ≡ b mod n and c ≡ d mod n then a + c ≡b + d mod n. 9g) fix n ∈ ℕ.Prove that if a ≡ b mod n and c ≡ d mod n then ac ≡bd mod n.
A relation R is defined on Z by aRb if |a−b| ≤ 2. Which of the...
A relation R is defined on Z by aRb if |a−b| ≤ 2. Which of the properties reflexive, symmetric and transitive does the relation R possess? Explain why If R does not possess one of these properties,
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. I need to prove that: a) R is an equivalence relation. (which I have) b) The equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq I...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT