Question

A. Suppose that v1, v2, v3 are linearly independant and w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether...

A. Suppose that v1, v2, v3 are linearly independant and w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether w1, w2, w3 are linear independent or linear deppendent.

B. Find the largest possible number of independent vectors among:

v1=(1,-1,0,0), v2=(1,0,-1,0), v3=(1,0,0,-1), v4=(0,1,-1,0), v5=(0,1,0,-1), v6=(0,0,1,-1)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define w1=V1, w2= v1+v2, w3=v1+ v2+v3,..., wn=v1+v2+v3+...+vn. (a) Show that {w1, w2, w3...,wn} is a linearly independent set. (b) Can you include that {w1,w2,...,wn} is a basis for V? Why or why not?
If S=(v1,v2,v3,v4) is a linearly independent sequence of vectors in Rn then A) n = 4...
If S=(v1,v2,v3,v4) is a linearly independent sequence of vectors in Rn then A) n = 4 B) The matrix ( v1 v2 v3 v4) has a unique pivot column. C) S is a basis for Span(v1,v2,v3,v4)
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix...
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix whose columns are ⃗v1,⃗v2,⃗v3,⃗v4. Suppose further that every subset Y ⊂ V of size two is linearly independent. Explain what form(s) rref(X), the reduced row echelon form of X, must take in this case. Hint: you won’t be able to pin down exact numbers for every entry of rref(X), but you might know things like whether the entry can be zero or not, etc.
Are vectors [1,0,0,2,1], [0,1,0,1,−4], and [0,0,1,−1,−1], and [3,1,5,2,−6] linearly independent? Are vectors v1=[−16,1,−39], v2=[2,6,3] and v3=[3,1,7]...
Are vectors [1,0,0,2,1], [0,1,0,1,−4], and [0,0,1,−1,−1], and [3,1,5,2,−6] linearly independent? Are vectors v1=[−16,1,−39], v2=[2,6,3] and v3=[3,1,7] linearly independent?
If S is the set of vectors in R^4 (S= {v1, v2, v3, v4, v5}) where,...
If S is the set of vectors in R^4 (S= {v1, v2, v3, v4, v5}) where, v1 = (1,2,-1,1), v2 = (-3,0,-4,3), v3 = (2,1,1,-1), v4 = (-3,3,-9,-6), v5 = (3,9,7,-6) Find a subset of S that is a basis for the span(S).
Consider four vectors v1 = [1,1,1,1], v2 = [-1,0,1,2], v3 = [a,1,0,b], and v4 = [3,2,a+b,0],...
Consider four vectors v1 = [1,1,1,1], v2 = [-1,0,1,2], v3 = [a,1,0,b], and v4 = [3,2,a+b,0], where a and b are parameters. Find all conditions on the values of a and b (if any) for which: 1. The number of linearly independent vectors in this collection is 1. 2. The number of linearly independent vectors in this collection is 2. 3. The number of linearly independent vectors in this collection is 3. 4. The number of linearly independent vectors in...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V , and if ⃗v4 ∈ V , then {⃗v1, ⃗v2, ⃗v3, ⃗v4} is also a linear dependent set of vectors in V . 2. Prove that if {⃗v1,⃗v2,...,⃗vr} is a linear dependent set of vectors in V, and if⃗ vr + 1 ,⃗vr+2,...,⃗vn ∈V, then {⃗v1,⃗v2,...,⃗vn} is also a linear dependent set of vectors in V.
Determine all real numbers a for which the vectors v1 = (1,−1,1,a,2) v2 = (−1,0,0,1,0) v3...
Determine all real numbers a for which the vectors v1 = (1,−1,1,a,2) v2 = (−1,0,0,1,0) v3 = (1,2,a + 1,1,0) v4 = (2,0,a + 3,2a + 3,4) make a linearly independent set. For which values of a does the set contain at least three linearly independent vectors?
Problem 6.4 What does it mean to say that a set of vectors {v1, v2, ....
Problem 6.4 What does it mean to say that a set of vectors {v1, v2, . . . , vn} is linearly dependent? Given the following vectors show that {v1, v2, v3, v4} is linearly dependent. Is it possible to express v4 as a linear combination of the other vectors? If so, do this. If not, explain why not. What about the vector v3? Anthony, Martin. Linear Algebra: Concepts and Methods (p. 206). Cambridge University Press. Kindle Edition.
suppose {V1, V2 , V3 } is a pairwise orthogonal set of nonzero vectors in Rn....
suppose {V1, V2 , V3 } is a pairwise orthogonal set of nonzero vectors in Rn. Show that {V1, V2 , V3 } is also linear independent.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT