Question

A proof of the Triangle Inequality for vectors (let v and w be vectors in R^n,...

A proof of the Triangle Inequality for vectors (let v and w be vectors in R^n, then ||v+w||<= ||v||+||w||) WITHOUT using the Cauchy-Schwarz Inequality. Properties of the dot product are okay to use, as are any theorems or definition from prior classes (Calc 3 and prior). This is for a first course in Linear Algebra.

I keep rolling the boulder up the hill only to end up at Cauchy-Schwarz again. Thanks for any help.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT